Generative AI-Driven Decision-Making for Disease Control and Pandemic Preparedness Model 4.0 in Rural Communities of Bangladesh: Management Informatics Approach
- URL: http://arxiv.org/abs/2508.01142v1
- Date: Sat, 02 Aug 2025 01:54:16 GMT
- Title: Generative AI-Driven Decision-Making for Disease Control and Pandemic Preparedness Model 4.0 in Rural Communities of Bangladesh: Management Informatics Approach
- Authors: Mohammad Saddam Hosen, MD Shahidul Islam Fakir, Shamal Chandra Hawlader, Farzana Rahman, Tasmim Karim, Muhammed Habil Uddin,
- Abstract summary: Rural Bangladesh is confronted with substantial healthcare obstacles.<n>These obstacles impede effective disease control and pandemic preparedness.<n>The study concludes that the health resilience and pandemic preparedness of marginalized rural populations can be improved through AI-driven, localized disease control strategies.
- Score: 0.7067443325368975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rural Bangladesh is confronted with substantial healthcare obstacles, such as inadequate infrastructure, inadequate information systems, and restricted access to medical personnel. These obstacles impede effective disease control and pandemic preparedness. This investigation employs a structured methodology to develop and analyze numerous plausible scenarios systematically. A purposive sampling strategy was implemented, which involved the administration of a questionnaire survey to 264 rural residents in the Rangamati district of Bangladesh and the completion of a distinct questionnaire by 103 healthcare and medical personnel. The impact and effectiveness of the study are assessed through logistic regression analysis and a pre-post comparison that employs the Wilcoxon Signed-Rank test and Kendall's coefficient for non-parametric paired and categorical variables. This analysis evaluates the evolution of disease control and preparedness prior to and subsequent to the implementation of the Generative AI-Based Model 4.0. The results indicate that trust in AI (\b{eta} = 1.20, p = 0.020) and confidence in sharing health data (\b{eta} = 9.049, p = 0.020) are the most significant predictors of AI adoption. At the same time, infrastructure limitations and digital access constraints continue to be significant constraints. The study concludes that the health resilience and pandemic preparedness of marginalized rural populations can be improved through AI-driven, localized disease control strategies. The integration of Generative AI into rural healthcare systems offers a transformative opportunity, but it is contingent upon active community engagement, enhanced digital literacy, and strong government involvement.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Design and Implementation of a Scalable Clinical Data Warehouse for Resource-Constrained Healthcare Systems [0.0]
This study proposes a scalable, privacy-limited clinical data warehouse, NCDW, designed for heterogeneous EHR integration in resource-limited settings.<n>The framework can be adapted to various healthcare settings across developing nations by modifying the ingestion layer to accommodate standards like ICD-11 and HL7 FHIR.
arXiv Detail & Related papers (2025-02-23T18:19:30Z) - A Strategy Transfer and Decision Support Approach for Epidemic Control in Experience Shortage Scenarios [0.0]
Strategy Transfer and Decision Support Approach (STDSA) is proposed based on the profile similarity evaluation.
This study will provide new insights into preventing and controlling epidemics in regions that lack experience.
arXiv Detail & Related papers (2024-04-10T02:25:27Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Adaptive Epidemic Forecasting and Community Risk Evaluation of COVID-19 [9.11149442423076]
We present a flexible end-to-end solution that seamlessly integrates public health data with tertiary client data to accurately estimate the risk of reopening a community.
At its core lies a state-of-the-art prediction model that auto-captures changing trends in transmission and mobility.
arXiv Detail & Related papers (2021-06-03T19:26:37Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Improving healthcare access management by predicting patient no-show
behaviour [0.0]
This work develops a Decision Support System (DSS) to support the implementation of strategies to encourage attendance.
We assess the effectiveness of different machine learning approaches to improve the accuracy of regression models.
In addition to quantifying relationships reported in previous studies, we find that income and neighbourhood crime statistics affect no-show probabilities.
arXiv Detail & Related papers (2020-12-10T14:57:25Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - From predictions to prescriptions: A data-driven response to COVID-19 [42.57407485467993]
We propose a comprehensive data-driven approach to understand the clinical characteristics of COVID-19.
We build personalized calculators to predict the risk of infection and mortality.
We propose an optimization model to re-allocate ventilators and alleviate shortages.
arXiv Detail & Related papers (2020-06-30T03:34:00Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.