Unitary Gate Synthesis via Polynomial Optimization
- URL: http://arxiv.org/abs/2508.01356v1
- Date: Sat, 02 Aug 2025 13:11:21 GMT
- Title: Unitary Gate Synthesis via Polynomial Optimization
- Authors: Llorenç Balada Gaggioli, Denys I. Bondar, Jiri Vala, Roman Ovsiannikov, Jakub Mareček,
- Abstract summary: Quantum optimal control plays a crucial role in the development of quantum technologies.<n>We present a method to synthesize gates using the Magnus expansion.<n>We show that we maintain high accuracy of QCPOP, while improving computational efficiency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optimal control plays a crucial role in the development of quantum technologies, particularly in the design and implementation of fast and accurate gates for quantum computing. Here, we present a method to synthesize gates using the Magnus expansion. In particular, we formulate a polynomial optimization problem that allows us to find the global solution without resorting to approximations of the exponential. The global method we use provides a certificate of globality and lets us do single-shot optimization, which implies it is generally faster than local methods. By optimizing over Hermitian matrices generating the unitaries, instead of the unitaries themselves, we can reduce the size of the polynomial to optimize, leading to faster convergence and better scalability, compared to the QCPOP method. Numerical experiments comparing our results with CRAB and GRAPE show that we maintain high accuracy of QCPOP, while improving computational efficiency.
Related papers
- Iterative Interpolation Schedules for Quantum Approximate Optimization Algorithm [1.845978975395919]
We present an iterative method that exploits the smoothness of optimal parameter schedules by expressing them in a basis of functions.<n>We demonstrate our method achieves better performance with fewer optimization steps than current approaches.<n>For the largest LABS instance, we achieve near-optimal merit factors with schedules exceeding 1000 layers, an order of magnitude beyond previous methods.
arXiv Detail & Related papers (2025-04-02T12:53:21Z) - Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Optimizing a parameterized controlled gate using Free Quaternion Selection [0.4353365283165517]
In this study, we parameterize a generalized controlled gate and propose an algorithm to minimize the cost function by maximally optimizing these parameters.<n>This method extends the Free Quaternion Selection (FQS) technique, which was originally developed for single-qubit gate optimization.
arXiv Detail & Related papers (2024-09-20T14:46:00Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Recommender System Expedited Quantum Control Optimization [0.0]
Quantum control optimization algorithms are routinely used to generate optimal quantum gates or efficient quantum state transfers.
There are two main challenges in designing efficient optimization algorithms, namely overcoming the sensitivity to local optima and improving the computational speed.
Here, we propose and demonstrate the use of a machine learning method, specifically the recommender system (RS), to deal with the latter challenge.
arXiv Detail & Related papers (2022-01-29T10:25:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.