論文の概要: Kernel-Based Sparse Additive Nonlinear Model Structure Detection through a Linearization Approach
- arxiv url: http://arxiv.org/abs/2508.01453v1
- Date: Sat, 02 Aug 2025 18:02:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.884363
- Title: Kernel-Based Sparse Additive Nonlinear Model Structure Detection through a Linearization Approach
- Title(参考訳): 線形化法によるカーネルベーススパース非線形モデル構造検出
- Authors: Sadegh Ebrahimkhani, John Lataire,
- Abstract要約: 連続時間NLシステムモデルのクラスを単純化するためのデータ駆動型アプローチを提案する。
スパース加法NLモデルでは,NLサブター数とその対応する入力空間を同定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The choice of parameterization in Nonlinear (NL) system models greatly affects the quality of the estimated model. Overly complex models can be impractical and hard to interpret, necessitating data-driven methods for simpler and more accurate representations. In this paper, we propose a data-driven approach to simplify a class of continuous-time NL system models using linear approximations around varying operating points. Specifically, for sparse additive NL models, our method identifies the number of NL subterms and their corresponding input spaces. Under small-signal operation, we approximate the unknown NL system as a trajectory-scheduled Linear Parameter-Varying (LPV) system, with LPV coefficients representing the gradient of the NL function and indicating input sensitivity. Using this sensitivity measure, we determine the NL system's structure through LPV model reduction by identifying non-zero LPV coefficients and selecting scheduling parameters. We introduce two sparse estimators within a vector-valued Reproducing Kernel Hilbert Space (RKHS) framework to estimate the LPV coefficients while preserving their structural relationships. The structure of the sparse additive NL model is then determined by detecting non-zero elements in the gradient vector (LPV coefficients) and the Hessian matrix (Jacobian of the LPV coefficients). We propose two computationally tractable RKHS-based estimators for this purpose. The sparsified Hessian matrix reveals the NL model's structure, with numerical simulations confirming the approach's effectiveness.
- Abstract(参考訳): 非線形(NL)システムモデルにおけるパラメータ化の選択は、推定モデルの品質に大きな影響を与える。
過度に複雑なモデルは、より単純で正確な表現のために、データ駆動型メソッドを解釈し、解釈し難い。
本稿では, 連続時間NLシステムモデルのクラスを, 様々な操作点に関する線形近似を用いて単純化するためのデータ駆動型手法を提案する。
具体的には、スパース加法NLモデルに対して、NLサブター数とその対応する入力空間を同定する。
小信号演算では,未知のNL系を,NL関数の勾配を表すLPV係数と入力感度を示すLPV系として近似した。
この感度測定を用いて、非ゼロのPV係数を同定し、スケジューリングパラメータを選択することにより、LPVモデル還元によるNL系の構造を決定する。
ベクトル値の再現ケルネルヒルベルト空間(RKHS)における2つのスパース推定器を導入し,その構造的関係を保ちながらLPV係数を推定する。
次に、勾配ベクトル(LPV係数)とヘッセン行列(LPPV係数のヤコビアン)の非零要素を検出することにより、スパース加法NLモデルの構造を決定する。
そこで本稿では,RKHSに基づく2つの推定手法を提案する。
ヘッセン行列はNLモデルの構造を明らかにし、数値シミュレーションによりアプローチの有効性が確かめられる。
関連論文リスト
- Efficient identification of linear, parameter-varying, and nonlinear systems with noise models [1.6385815610837167]
本稿では、状態空間の力学モデルの幅広いスペクトルを推定できる一般的なシステム同定手法を提案する。
この一般的なモデル構造に対して、モデル力学は決定論的過程とノイズ部分に分離できることを示す。
人工ニューラルネットワーク(ANN)を用いた非線形機能関係のパラメータ化
論文 参考訳(メタデータ) (2025-04-16T11:23:30Z) - An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models [86.05414211113627]
システム識別の問題に取り組み、入力を選択し、実際のシステムから対応する出力を観測し、データに最も合うようにモデルのパラメータを最適化する。
本稿では,任意のシステムやパラメトリックモデルと互換性のある,フレキシブルで計算可能な手法を提案する。
論文 参考訳(メタデータ) (2025-01-28T01:57:51Z) - GP-FL: Model-Based Hessian Estimation for Second-Order Over-the-Air Federated Learning [52.295563400314094]
2次法は学習アルゴリズムの収束率を改善するために広く採用されている。
本稿では,無線チャネルに適した新しい2次FLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-05T04:27:41Z) - Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design [0.9187159782788578]
ポリトープオートエンコーダは、ポリトープの状態の低次元次元パラメトリゼーションを提供する。
非線形PDEの場合、これは低次元線形パラメータ変動(LPV)近似に容易に適用できる。
論文 参考訳(メタデータ) (2024-03-26T18:57:56Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
我々は密度近似と計算効率の面でいくつかの利点を提供するガウスPSDモデルに基づく新しいフィルタのクラスを提案する。
本研究では,遷移や観測がガウスPSDモデルである場合,フィルタリングを効率的にクローズド形式で行うことができることを示す。
提案する推定器は, 近似の精度に依存し, 遷移確率の正則性に適応する推定誤差を伴って, 高い理論的保証を享受する。
論文 参考訳(メタデータ) (2024-02-15T08:51:49Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
本稿では,複数時系列に対する効率的な非線形モデリング手法を提案する。
異なる時系列変数間の非線形相互作用を含む。
実験結果から,提案アルゴリズムは相似的にVAR係数の支持値の同定を改善することが示された。
論文 参考訳(メタデータ) (2023-09-29T11:42:59Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
支配方程式がなければ、パラメトリック還元次代理モデルを非侵襲的に構築する必要がある。
我々の研究は、パラメータのスナップショットを効率的に表示するための非侵入的最適性基準を提供する。
カーネルベースの浅層ニューラルネットワークを用いた能動的学習駆動サロゲートモデルを提案する。
論文 参考訳(メタデータ) (2023-06-09T18:01:14Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
偏微分方程式モデルにおけるデータ同化とパラメータ推定のためのモデル逆アルゴリズムCKLEMAPを提案する。
CKLEMAP法は標準的なMAP法に比べてスケーラビリティがよい。
論文 参考訳(メタデータ) (2023-01-26T18:14:12Z) - Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis [7.373617024876726]
解析におけるいくつかの非線形作用素は、現代のニューラル作用素によって利用されていない時間構造に依存している。
本稿では,無限次元線形距離空間を適切に扱うディープラーニングモデル設計フレームワークを提案する。
我々のフレームワークはコンパクトな集合や任意の有限時間地平線 H" や滑らかなトレースクラス作用素に対して均一に近似できることを示す。
論文 参考訳(メタデータ) (2022-10-24T14:43:03Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。