論文の概要: Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design
- arxiv url: http://arxiv.org/abs/2403.18044v2
- Date: Thu, 23 Jan 2025 02:28:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:54:57.837604
- Title: Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design
- Title(参考訳): 低次元線形パラメータ変動近似のための深層ポリトピックオートエンコーダと非線形フィードバック設計
- Authors: Jan Heiland, Yongho Kim, Steffen W. R. Werner,
- Abstract要約: ポリトープオートエンコーダは、ポリトープの状態の低次元次元パラメトリゼーションを提供する。
非線形PDEの場合、これは低次元線形パラメータ変動(LPV)近似に容易に適用できる。
- 参考スコア(独自算出の注目度): 0.9187159782788578
- License:
- Abstract: Polytopic autoencoders provide low-di\-men\-sion\-al parametrizations of states in a polytope. For nonlinear PDEs, this is readily applied to low-dimensional linear parameter-varying (LPV) approximations as they have been exploited for efficient nonlinear controller design via series expansions of the solution to the state-dependent Riccati equation. In this work, we develop a polytopic autoencoder for control applications and show how it improves on standard linear approaches in view of LPV approximations of nonlinear systems. We discuss how the particular architecture enables exact representation of target states and higher order series expansions of the nonlinear feedback law at little extra computational effort in the online phase and how the linear though high-dimensional and nonstandard Lyapunov equations are efficiently computed during the offline phase. In a numerical study, we illustrate the procedure and how this approach can reliably outperform the standard linear-quadratic regulator design.
- Abstract(参考訳): ポリトープオートエンコーダは、ポリトープの状態の低次元次元次元のパラメトリゼーションを提供する。
非線形PDEに対して、これは低次元線形パラメータ変化(LPV)近似に容易に適用でき、状態依存リカティ方程式への解の直列展開を通じて効率的な非線形コントローラ設計に利用されてきた。
本研究では,制御用多目的オートエンコーダを開発し,非線形システムのLPV近似の観点から,標準的な線形アプローチの改善方法を示す。
本稿では, オンライン相における非線形フィードバック法則の厳密な表現と高次系列展開を, オンライン相における計算量が少なく, オフライン相における線形だが高次元かつ非標準のリアプノフ方程式の効率的な計算方法について論じる。
数値解析において、この手法が標準線形四元数レギュレータ設計を確実に上回る方法と方法を説明する。
関連論文リスト
- Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Provably Efficient Algorithm for Nonstationary Low-Rank MDPs [48.92657638730582]
我々は,非定常RLを,遷移カーネルと報酬の両方が時間とともに変化するような,エピソードな低ランクMDPで調査する最初の試みを行っている。
本稿では,パラメータ依存型ポリシ最適化アルゴリズムである Portal を提案し,パラメータフリー版である Ada-Portal の Portal をさらに改良する。
両アルゴリズムとも,非定常性が著しく大きくない限り, Portal と Ada-PortAL はサンプリング効率が良く,サンプリング複雑性を伴う平均的動的準最適ギャップを任意に小さく得ることを示す。
論文 参考訳(メタデータ) (2023-08-10T09:52:44Z) - Convolutional Autoencoders, Clustering and POD for Low-dimensional
Parametrization of Navier-Stokes Equations [1.160208922584163]
非線形エンコーダとアフィン線形デコーダからなる畳み込みオートエンコーダ(CAE)を提案する。
提案手法は, 圧縮不能なNavier-Stokes方程式をモデルとした2つのシリンダーウェイクシナリオにおける標準POD手法と比較した。
論文 参考訳(メタデータ) (2023-02-02T18:12:08Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Non-intrusive Nonlinear Model Reduction via Machine Learning
Approximations to Low-dimensional Operators [0.0]
本稿では,従来の非侵入的手法を用いて,従来型の侵入的縮小順序モデルを正確に近似する手法を提案する。
この手法は、現代の機械学習回帰手法を用いて、プロジェクションベースのリダクションオーダーモデル(ROM)に関連する低次元演算子を近似する。
非侵襲性を実現することに加えて、このアプローチが計算の複雑さを極端に低くし、最大1000ドル程度の実行時間削減を実現することを実証する。
論文 参考訳(メタデータ) (2021-06-17T17:04:42Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
線形関数表現のような低複雑度モデルがサンプル効率のよい強化学習を可能にする上で重要な役割を果たしている。
本稿では,オンライン/探索的な方法でサンプルを描画するが,制御不能な方法で以前の状態をバックトラックし,再訪することができる新しいサンプリングプロトコルについて検討する。
この設定に合わせたアルゴリズムを開発し、特徴次元、地平線、逆の準最適ギャップと実際にスケールするサンプル複雑性を実現するが、状態/作用空間のサイズではない。
論文 参考訳(メタデータ) (2021-05-17T17:22:07Z) - POD-DL-ROM: enhancing deep learning-based reduced order models for
nonlinear parametrized PDEs by proper orthogonal decomposition [0.0]
深層学習に基づく還元順序モデル(DL-ROM)は,従来の還元順序モデル(ROM)で共有される共通制限を克服するために最近提案されている。
本稿では, DL-ROMの高価なトレーニング段階を回避するために, (i) PODによる事前次元化を行い, (ii) 多要素事前学習段階に依存する方法を提案する。
提案したPOD-DL-ROMは、複数の(スカラーおよびベクトル、線形および非線形の両方)時間依存パラメタライズPDEで試験される。
論文 参考訳(メタデータ) (2021-01-28T07:34:15Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z) - Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks [20.44438519046223]
広域ニューラルネットワークがPL$*$条件を満たすことを示し、(S)GD収束を大域最小値に説明する。
広域ニューラルネットワークがPL$*$条件を満たすことを示し、(S)GD収束を大域最小値に説明する。
論文 参考訳(メタデータ) (2020-02-29T17:18:28Z) - A comprehensive deep learning-based approach to reduced order modeling
of nonlinear time-dependent parametrized PDEs [0.0]
線形および非線形時間依存パラメタライズPDEのためのDL-ROMを構築する方法を示す。
数値的な結果は、PDE解多様体の内在次元と次元が等しいDL-ROMがパラメタライズされたPDEの解を近似できることを示している。
論文 参考訳(メタデータ) (2020-01-12T21:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。