論文の概要: Uncertainty Estimation for Novel Views in Gaussian Splatting from Primitive-Based Representations of Error and Visibility
- arxiv url: http://arxiv.org/abs/2508.02443v1
- Date: Mon, 04 Aug 2025 14:02:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.370944
- Title: Uncertainty Estimation for Novel Views in Gaussian Splatting from Primitive-Based Representations of Error and Visibility
- Title(参考訳): 誤りと可視性の原始的表現によるガウス平滑化の新しい視点の不確かさ推定
- Authors: Thomas Gottwald, Edgar Heinert, Matthias Rottmann,
- Abstract要約: ガウスめっきにおける不確実性推定(UE)の新しい手法を提案する。
本手法は,有意義な不確実性情報を伝達する,誤りの原始表現とトレーニングビューの可視性を確立する。
我々のUEは、特に前景オブジェクトにおいて、真のエラー、最先端の手法よりも高い相関関係を示す。
- 参考スコア(独自算出の注目度): 4.69726714177332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a novel method for uncertainty estimation (UE) in Gaussian Splatting. UE is crucial for using Gaussian Splatting in critical applications such as robotics and medicine. Previous methods typically estimate the variance of Gaussian primitives and use the rendering process to obtain pixel-wise uncertainties. Our method establishes primitive representations of error and visibility of trainings views, which carries meaningful uncertainty information. This representation is obtained by projection of training error and visibility onto the primitives. Uncertainties of novel views are obtained by rendering the primitive representations of uncertainty for those novel views, yielding uncertainty feature maps. To aggregate these uncertainty feature maps of novel views, we perform a pixel-wise regression on holdout data. In our experiments, we analyze the different components of our method, investigating various combinations of uncertainty feature maps and regression models. Furthermore, we considered the effect of separating splatting into foreground and background. Our UEs show high correlations to true errors, outperforming state-of-the-art methods, especially on foreground objects. The trained regression models show generalization capabilities to new scenes, allowing uncertainty estimation without the need for holdout data.
- Abstract(参考訳): 本研究では,ガウスめっきにおける不確実性推定(UE)の新しい手法を提案する。
UEは、ロボティクスや医学などの重要な応用において、ガウシアンスプラッティングを使用するために不可欠である。
従来の手法では、ガウス原始体のばらつきを推定し、レンダリングプロセスを用いてピクセルワイズ不確実性を得るのが一般的であった。
本手法は,有意義な不確実性情報を伝達する,誤りの原始表現とトレーニングビューの可視性を確立する。
この表現は、トレーニングエラーのプロジェクションとプリミティブへの可視性によって得られる。
それらの新規な視点に対する原始的な不確実性表現をレンダリングし、不確実性特徴写像を生成することにより、新規な視点の不確実性が得られる。
新規なビューの不確実性の特徴マップを集約するために、ホールドアウトデータに対して画素ワイズ回帰を行う。
本実験では,不確実性特徴写像と回帰モデルの組み合わせについて検討した。
さらに,スプラッティングを前景と背景に分離する効果を検討した。
我々のUEは、特に前景オブジェクトにおいて、真のエラー、最先端の手法よりも高い相関関係を示す。
トレーニングされた回帰モデルは、新しいシーンへの一般化能力を示し、ホールドアウトデータを必要としない不確実性推定を可能にする。
関連論文リスト
- Bayesian generative models can flag performance loss, bias, and out-of-distribution image content [15.835055687646507]
生成モデルは、異常検出、特徴抽出、データの可視化、画像生成などの医療画像タスクに人気がある。
ディープラーニングモデルによってパラメータ化されているため、分散シフトに敏感であり、アウト・オブ・ディストリビューションデータに適用しても信頼できないことが多い。
我々は,インク,定規,パッチなどの分布外画像コンテンツを検出する画素ワイド不確実性を示す。
論文 参考訳(メタデータ) (2025-03-21T18:45:28Z) - Predictive Uncertainty Quantification for Bird's Eye View Segmentation: A Benchmark and Novel Loss Function [10.193504550494486]
本稿では,Bird's Eye View (BEV)セグメンテーションにおける予測不確実性定量化のためのベンチマークを提案する。
本研究は,非分類および非分布画素の検出における定量化不確実性の有効性に焦点をあてる。
本研究では,不均衡なデータに特化して設計された新しい損失関数Uncertainty-Focal-Cross-Entropy (UFCE)を提案する。
論文 参考訳(メタデータ) (2024-05-31T16:32:46Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Poisson Reweighted Laplacian Uncertainty Sampling for Graph-based Active
Learning [1.6752182911522522]
グラフに基づく能動学習において,不確実性サンプリングは探索と搾取を両立させるのに十分であることを示す。
特に,最近開発されたアルゴリズムであるPoisson ReWeighted Laplace Learning (PWLL) を用いて分類を行う。
本稿では,複数のグラフに基づく画像分類問題に対する実験結果について述べる。
論文 参考訳(メタデータ) (2022-10-27T22:07:53Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal
Estimation [25.003116148843525]
単一画像からの表面正規化は3次元シーン理解において重要な課題である。
本稿では,既存手法で共有されている2つの制約,すなわち,アレータリック不確実性を推定できないこと,および予測における詳細性の欠如に対処する。
本稿では,推定不確実性に基づいて,画素単位のパーセプトロンをサンプルとするデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-20T23:30:04Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
Errors-in-Variablesの概念がベイズ的深部回帰においてどのように利用できるかを示す。
様々なシミュレートされた実例に沿ったアプローチについて論じる。
論文 参考訳(メタデータ) (2021-05-19T12:37:02Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。