論文の概要: Causal identification with $Y_0$
- arxiv url: http://arxiv.org/abs/2508.03167v1
- Date: Tue, 05 Aug 2025 07:13:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.834246
- Title: Causal identification with $Y_0$
- Title(参考訳): $Y_0$による因果識別
- Authors: Charles Tapley Hoyt, Craig Bakker, Richard J. Callahan, Joseph Cottam, August George, Benjamin M. Gyori, Haley M. Hummel, Nathaniel Merrill, Sara Mohammad Taheri, Pruthvi Prakash Navada, Marc-Antoine Parent, Adam Rupe, Olga Vitek, Jeremy Zucker,
- Abstract要約: $Y_$は、データに対する介入、反ファクト、トランスポートビリティクエリを適用する因果識別アルゴリズムを実装している。
$Y_$は、因果クエリと評価を表現するためのドメイン固有の言語を提供する。
$Y_$ は pip install y0 でインストールできる。
- 参考スコア(独自算出の注目度): 3.5245733269245276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the $Y_0$ Python package, which implements causal identification algorithms that apply interventional, counterfactual, and transportability queries to data from (randomized) controlled trials, observational studies, or mixtures thereof. $Y_0$ focuses on the qualitative investigation of causation, helping researchers determine whether a causal relationship can be estimated from available data before attempting to estimate how strong that relationship is. Furthermore, $Y_0$ provides guidance on how to transform the causal query into a symbolic estimand that can be non-parametrically estimated from the available data. $Y_0$ provides a domain-specific language for representing causal queries and estimands as symbolic probabilistic expressions, tools for representing causal graphical models with unobserved confounders, such as acyclic directed mixed graphs (ADMGs), and implementations of numerous identification algorithms from the recent causal inference literature. The $Y_0$ source code can be found under the MIT License at https://github.com/y0-causal-inference/y0 and it can be installed with pip install y0.
- Abstract(参考訳): 提案するY_0$ Pythonパッケージは,介入,反ファクト,トランスポートビリティのクエリを(ランダム化)制御された試験,観察研究,あるいはそれらの混合物のデータに適用する因果同定アルゴリズムを実装している。
Y_0$は因果関係の質的な調査に焦点を合わせ、研究者がその関係がどれだけ強いかを推定する前に、利用可能なデータから因果関係を推定できるかどうかを判断する手助けをする。
さらに$Y_0$は、因果クエリを、利用可能なデータから非パラメトリックに推定できるシンボリックな推定値に変換する方法についてのガイダンスを提供する。
Y_0$は、因果クエリと推定値を象徴的な確率的表現として表現するためのドメイン固有言語、非巡回有向混合グラフ(ADMG)のような未観測の共著者による因果グラフィカルモデルを表現するためのツール、そして最近の因果推論文献からの多数の識別アルゴリズムの実装を提供する。
Y_0$のソースコードはMITライセンスでhttps://github.com/y0-causal-inference/y0にある。
関連論文リスト
- A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery [47.36895591886043]
非定常対称雑音モデル(HSNMs)について検討する。
データ分布のスコア(すなわちログ密度の勾配)の歪度に基づいて、HSNMを識別するための新しい基準を導入する。
外部ノイズの抽出を必要とせずにヘテロ代用ノイズを処理するアルゴリズムであるSkewScoreを提案する。
論文 参考訳(メタデータ) (2024-10-08T22:28:30Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Causal Discovery from Poisson Branching Structural Causal Model Using High-Order Cumulant with Path Analysis [24.826219353338132]
カウントデータの最も一般的な特徴の1つは、二項化演算子によって記述される固有の分岐構造である。
単一の因果対はマルコフ同値、すなわち$Xrightarrow Y$ と $Yrightarrow X$ は分散同値である。
本稿では,ポアソン分岐構造因果モデル(PB-SCM)を提案し,高次累積を用いたPB-SCMの経路解析を行う。
論文 参考訳(メタデータ) (2024-03-25T08:06:08Z) - Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand [9.460857822923842]
観測データからの因果推論は、信頼できる機械学習における多くの応用において重要な役割を果たす。
任意の因果グラフを与えられた任意の介入分布からサンプリングする方法を示す。
またテキストと画像変数を含むMIMIC-CXRデータセットから高次元干渉サンプルを生成する。
論文 参考訳(メタデータ) (2024-02-12T05:48:31Z) - A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive
Noise Models [49.038420266408586]
分散の増加による変数のソートは、しばしば因果順序に近い順序になることを示す。
本稿ではR2$-SortnRegressと呼ばれる,高いR2$-sortabilityを利用する効率的なベースラインアルゴリズムを提案する。
その結果,因果発見に関連するデータ生成プロセスの仮定として,R2$-sortabilityが高額であることが判明した。
論文 参考訳(メタデータ) (2023-03-31T17:05:46Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
位置スケール・異方性雑音モデル(LSNM)のクラスについて検討する。
症例によっては, 因果方向が同定可能であることが示唆された。
我々は,LSNMの2つの推定器を提案し,その1つは(非線形)特徴写像に基づく推定器と,1つはニューラルネットワークに基づく推定器を提案する。
論文 参考訳(メタデータ) (2022-10-13T17:18:59Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
我々は、$K関連ガウス非巡回グラフ(DAG)の発見問題を考える。
マルチタスク学習環境下では, 線形構造方程式モデルを学習するためのMLE ($l_1/l$-regularized maximum chance estimator) を提案する。
理論的には、関係するタスクにまたがるデータを活用することで、因果順序を復元する際のサンプルの複雑さをより高めることができることを示す。
論文 参考訳(メタデータ) (2021-11-03T22:10:18Z) - On the Generative Utility of Cyclic Conditionals [103.1624347008042]
2つの条件付きモデル$p(x|z)$を用いて、共同分布$p(x,z)$をモデル化できるかどうか、また、どのようにしてサイクルを形成するかを検討する。
本稿では,周期条件生成モデリングのためのCyGenフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T10:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。