論文の概要: Next Generation Equation-Free Multiscale Modelling of Crowd Dynamics via Machine Learning
- arxiv url: http://arxiv.org/abs/2508.03926v1
- Date: Tue, 05 Aug 2025 21:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.454692
- Title: Next Generation Equation-Free Multiscale Modelling of Crowd Dynamics via Machine Learning
- Title(参考訳): 機械学習によるクラウドダイナミクスの次世代方程式フリーマルチスケールモデリング
- Authors: Hector Vargas Alvarez, Dimitrios G. Patsatzis, Lucia Russo, Ioannis Kevrekidis, Constantinos Siettos,
- Abstract要約: 本稿では,潜在空間における創発的群運動に対する離散的進化演算子を学習するために,多様体と機械学習を組み合わせた手法を提案する。
我々のアプローチは4段階であり、高次元空間における再構成された力学の質量を明示的に保存する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bridging the microscopic and the macroscopic modelling scales in crowd dynamics constitutes an important, open challenge for systematic numerical analysis, optimization, and control. We propose a combined manifold and machine learning approach to learn the discrete evolution operator for the emergent crowd dynamics in latent spaces from high-fidelity agent-based simulations. The proposed framework builds upon our previous works on next-generation Equation-free algorithms on learning surrogate models for high-dimensional and multiscale systems. Our approach is a four-stage one, explicitly conserving the mass of the reconstructed dynamics in the high-dimensional space. In the first step, we derive continuous macroscopic fields (densities) from discrete microscopic data (pedestrians' positions) using KDE. In the second step, based on manifold learning, we construct a map from the macroscopic ambient space into the latent space parametrized by a few coordinates based on POD of the corresponding density distribution. The third step involves learning reduced-order surrogate ROMs in the latent space using machine learning techniques, particularly LSTMs networks and MVARs. Finally, we reconstruct the crowd dynamics in the high-dimensional space in terms of macroscopic density profiles. We demonstrate that the POD reconstruction of the density distribution via SVD conserves the mass. With this "embed->learn in latent space->lift back to the ambient space" pipeline, we create an effective solution operator of the unavailable macroscopic PDE for the density evolution. For our illustrations, we use the Social Force Model to generate data in a corridor with an obstacle, imposing periodic boundary conditions. The numerical results demonstrate high accuracy, robustness, and generalizability, thus allowing for fast and accurate modelling/simulation of crowd dynamics from agent-based simulations.
- Abstract(参考訳): 群衆力学における微視的およびマクロ的モデリングスケールのブリッジは、体系的な数値解析、最適化、制御において重要な課題となっている。
高忠実度エージェントに基づくシミュレーションから,潜在空間における創発的群衆ダイナミクスの離散的進化演算子を学習するための,多様体と機械学習を組み合わせた手法を提案する。
提案するフレームワークは,高次元およびマルチスケールシステムのための代理モデル学習における次世代方程式フリーアルゴリズムに関するこれまでの研究に基づいている。
我々のアプローチは4段階であり、高次元空間における再構成された力学の質量を明示的に保存する。
最初のステップでは、KDEを用いて離散顕微鏡データ(歩行者の位置)から連続したマクロ場(密度)を導出する。
2番目のステップでは、多様体学習に基づき、対応する密度分布のPODに基づいて、いくつかの座標でパラメータ化されたマクロ的周囲空間から潜在空間への写像を構築する。
第3のステップは、機械学習技術、特にLSTMネットワークとMVARを使用して、潜伏空間における低次サロゲートROMを学習することである。
最後に,高次元空間における群集動態をマクロ密度プロファイルを用いて再構成する。
SVDによる密度分布のPOD再構成は質量を保存することを実証する。
この「潜伏空間から周囲空間への昇降」パイプラインを組み込むことで、不利用可能なマクロなPDEの効率的な解演算子を密度発展のために作成する。
図では、社会力モデルを用いて障害のある廊下でデータを生成し、周期的な境界条件を示唆する。
数値計算の結果,高い精度,堅牢性,一般化性を示し,エージェント・ベース・シミュレーションによる群衆動態の高速かつ高精度なモデリング・シミュレーションを可能にした。
関連論文リスト
- Geometric Operator Learning with Optimal Transport [77.16909146519227]
複素測地上での偏微分方程式(PDE)に対する演算子学習に最適輸送(OT)を統合することを提案する。
表面に焦点を当てた3次元シミュレーションでは、OTベースのニューラルオペレーターが表面形状を2次元パラメータ化潜在空間に埋め込む。
ShapeNet-Car と DrivAerNet-Car を用いたレイノルズ平均化 Navier-Stokes 方程式 (RANS) を用いた実験により,提案手法は精度の向上と計算コストの削減を図った。
論文 参考訳(メタデータ) (2025-07-26T21:28:25Z) - Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
生成性能を改善するために,セマンティックな事前情報を統合するReaLSを導入する。
本研究では、ReaLSでトレーニングされたDETとSiTが、FID測定値の15%改善を実現することを示す。
拡張されたセマンティック潜在空間は、セグメンテーションや深さ推定のようなより知覚的な下流タスクを可能にする。
論文 参考訳(メタデータ) (2025-02-01T07:42:12Z) - Physically Interpretable Representation and Controlled Generation for Turbulence Data [39.42376941186934]
本稿では,高次元科学的データを低次元,物理的に意味のある表現に符号化するデータ駆動型手法を提案する。
レイノルズ数の範囲を越えるシリンダーを過ぎる流れの2次元ナビエ・ストークスシミュレーションを用いて,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2025-01-31T17:51:14Z) - PRAGA: Prototype-aware Graph Adaptive Aggregation for Spatial Multi-modal Omics Analysis [1.1619559582563954]
空間多モードオミクス解析(PRAGA)のためのPRototype-Aware Graph Adaptative Aggregationを提案する。
PRAGAは動的グラフを構築し、潜在意味関係を捉え、空間情報と特徴意味論を包括的に統合する。
学習可能なグラフ構造は、クロスモーダルな知識を学習することで摂動を損なうこともできる。
論文 参考訳(メタデータ) (2024-09-19T12:53:29Z) - Recurrent Deep Kernel Learning of Dynamical Systems [0.5825410941577593]
デジタル双対は計算効率の低い低次モデル(ROM)を必要とし、物理的資産の複雑な力学を正確に記述することができる。
データから低次元の潜伏空間を発見するために,データ駆動型非侵入型深層学習法(SVDKL)を提案する。
その結果,本フレームワークは, (i) 測定値の復調と再構成, (ii) システム状態のコンパクトな表現の学習, (iii) 低次元潜在空間におけるシステム進化の予測, (iv) 不確実性をモデル化できることがわかった。
論文 参考訳(メタデータ) (2024-05-30T07:49:02Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
流れのダイナミクスを捉える低次モデル (ROM) はシミュレーションの計算コストの削減に重要である。
この研究は、フローのダイナミクスと特性を効果的にキャプチャする最小次元モデルのためのデータ駆動フレームワークを示す。
我々はこれをカオス的かつ断続的な行動からなる体制におけるコルモゴロフ流に適用する。
論文 参考訳(メタデータ) (2022-10-29T23:05:39Z) - Controlled Gaussian Process Dynamical Models with Application to Robotic
Cloth Manipulation [10.04778213256535]
我々は高次元非線形力学学習のための制御ガウス過程力学モデル(CGPDM)を提案する。
CGPDMは低次元の潜在空間で構成され、外部制御変数が作用できる関連するダイナミクスを持つ。
幅広い動作を一般化し、これまで目に見えない一連の制御動作によって得られた布の動きを確実に予測することができる。
論文 参考訳(メタデータ) (2021-03-11T11:34:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。