論文の概要: Optimality Principles and Neural Ordinary Differential Equations-based Process Modeling for Distributed Control
- arxiv url: http://arxiv.org/abs/2508.04799v1
- Date: Wed, 06 Aug 2025 18:16:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.614319
- Title: Optimality Principles and Neural Ordinary Differential Equations-based Process Modeling for Distributed Control
- Title(参考訳): 分散制御のための最適原理とニューラル正規微分方程式に基づくプロセスモデリング
- Authors: Michael R. Wartmann, B. Erik Ydstie,
- Abstract要約: プロセス制御のための機械学習と分析の最近の進歩は、新しいデータ駆動手法を古典的なプロセスモデルと制御とどのように自然に統合するかという疑問を提起している。
本稿では,一貫したトポロジ特性と膨大な量の保存を通じて,データ駆動型アルゴリズムの統合を可能にするプロセスモデリングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Most recent advances in machine learning and analytics for process control pose the question of how to naturally integrate new data-driven methods with classical process models and control. We propose a process modeling framework enabling integration of data-driven algorithms through consistent topological properties and conservation of extensive quantities. Interconnections among process network units are represented through connectivity matrices and network graphs. We derive the system's natural objective function equivalent to the non-equilibrium entropy production in a steady state system as a driving force for the process dynamics. We illustrate how distributed control and optimization can be implemented into process network structures and how control laws and algorithms alter the system's natural equilibrium towards engineered objectives. The basic requirement is that the flow conditions can be expressed in terms of conic sector (passivity) conditions. Our formalism allows integration of fundamental conservation properties from topology with learned dynamic relations from data through sparse deep neural networks. We demonstrate in a practical example of a simple inventory control system how to integrate the basic topology of a process with a neural network ordinary differential equation model. The system specific constitutive equations are left undescribed and learned by the neural ordinary differential equation algorithm using the adjoint method in combination with an adaptive ODE solver from synthetic time-series data. The resulting neural network forms a state space model for use in e.g. a model predictive control algorithm.
- Abstract(参考訳): プロセス制御のための機械学習と分析の最近の進歩は、どのようにして古典的なプロセスモデルと制御に新しいデータ駆動手法を自然に統合するかという疑問を引き起こしている。
本稿では,一貫したトポロジ特性と膨大な量の保存を通じて,データ駆動型アルゴリズムの統合を可能にするプロセスモデリングフレームワークを提案する。
プロセスネットワークユニット間の相互接続は、接続行列とネットワークグラフを通して表現される。
本研究では, 定常状態系の非平衡エントロピー生成と等価な系の自然目的関数をプロセスダイナミクスの駆動力として導出する。
分散制御と最適化がプロセスネットワーク構造にどのように実装され、制御法則とアルゴリズムが、エンジニアリング対象に対するシステムの自然な平衡をどう変えるかを説明する。
基本的な要件は、流れの条件が円錐セクター(受動性)の条件で表現できることである。
私たちのフォーマリズムは、トポロジからの基本的な保存特性と、スパースディープニューラルネットワークによるデータからの学習された動的関係の統合を可能にします。
本稿では,プロセスの基本トポロジをニューラルネットワーク常微分方程式モデルとどのように統合するかを,単純な在庫管理システムの実践例で示す。
システム固有の構成方程式は、合成時系列データからの適応ODEソルバと結合法を用いて、ニューラルネットワーク常微分方程式アルゴリズムによって記述されず、学習される。
結果のニューラルネットワークは、例えばモデル予測制御アルゴリズムで使用する状態空間モデルを形成する。
関連論文リスト
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Symbolic Neural Ordinary Differential Equations [11.69943926220929]
記号型ニューラル正規微分方程式(SNODE)と呼ばれる記号型連続深度ニューラルネットワークの新しい学習フレームワークを提案する。
我々の枠組みは、システム分岐制御、再構築と予測、新しい方程式の発見など、幅広い科学的問題にさらに適用することができる。
論文 参考訳(メタデータ) (2025-03-11T05:38:22Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks [20.12750360095627]
結合力学系のための合成学習アルゴリズムを開発した。
我々は、ポート・ハミルトンDAEの微分および代数的成分における未知項のパラメータ化にニューラルネットワークを用いる。
我々は、個別のN-PHDAEモデルを個別のグリッドコンポーネント向けに訓練し、それらを結合して大規模ネットワークの挙動を正確に予測する。
論文 参考訳(メタデータ) (2024-12-15T15:13:11Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Neural ODEs as Feedback Policies for Nonlinear Optimal Control [1.8514606155611764]
ニューラルネットワークをパラメータ化した微分方程式として連続時間力学をモデル化するために、ニューラル常微分方程式(ニューラルODE)を用いる。
本稿では,一般非線形最適制御問題の解法としてニューラル・オードとして提案するニューラル・コントロール・ポリシーを提案する。
論文 参考訳(メタデータ) (2022-10-20T13:19:26Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Cubature Kalman Filter Based Training of Hybrid Differential Equation
Recurrent Neural Network Physiological Dynamic Models [13.637931956861758]
ニューラルネットワーク近似を用いて、未知の常微分方程式を既知のODEで近似する方法を示す。
その結果、このRBSEによるNNパラメータのトレーニングは、バックプロパゲーションによるニューラルネットワークのトレーニングよりも優れた結果(測定/状態推定精度)が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-12T15:38:13Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。