論文の概要: Learning Geometric-Aware Quadrature Rules for Functional Minimization
- arxiv url: http://arxiv.org/abs/2508.05445v1
- Date: Thu, 07 Aug 2025 14:37:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.911688
- Title: Learning Geometric-Aware Quadrature Rules for Functional Minimization
- Title(参考訳): 関数最小化のための幾何学的幾何規則の学習
- Authors: Costas Smaragdakis,
- Abstract要約: 我々は、点雲の基底となる幾何学から直接最適な2次重みを学習するために設計されたニューラルネットワーク(GNN)アーキテクチャを導入する。
この研究はエネルギー汎関数変動の最適化に不可欠であり、深層学習に基づく変分解法の改善につながる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate numerical integration over non-uniform point clouds is a challenge for modern mesh-free machine learning solvers for partial differential equations (PDEs) using variational principles. While standard Monte Carlo (MC) methods are not capable of handling a non-uniform point cloud, modern neural network architectures can deal with permutation-invariant inputs, creating quadrature rules for any point cloud. In this work, we introduce QuadrANN, a Graph Neural Network (GNN) architecture designed to learn optimal quadrature weights directly from the underlying geometry of point clouds. The design of the model exploits a deep message-passing scheme where the initial layer encodes rich local geometric features from absolute and relative positions as well as an explicit local density measure. In contrast, the following layers incorporate a global context vector. These architectural choices allow the QuadrANN to generate a data-driven quadrature rule that is permutation-invariant and adaptive to both local point density and the overall domain shape. We test our methodology on a series of challenging test cases, including integration on convex and non-convex domains and estimating the solution of the Heat and Fokker-Planck equations. Across all the tests, QuadrANN reduces the variance of the integral estimation compared to standard Quasi-Monte Carlo methods by warping the point clouds to be more dense in critical areas where the integrands present certain singularities. This enhanced stability in critical areas of the domain at hand is critical for the optimization of energy functionals, leading to improved deep learning-based variational solvers.
- Abstract(参考訳): 非一様点雲上の正確な数値積分は、変分原理を用いた偏微分方程式(PDE)に対する現代的なメッシュフリー機械学習ソルバの課題である。
標準的なモンテカルロ法(MC)では、一様でない点クラウドを処理できないが、現代のニューラルネットワークアーキテクチャは置換不変の入力を扱うことができ、任意の点クラウドに対して二次ルールを作成することができる。
本研究では,点雲の基底形状から直接最適な二次重みを学習するために設計されたグラフニューラルネットワーク(GNN)アーキテクチャであるQuadrANNを紹介する。
モデルの設計は、初期層が絶対位置と相対位置からリッチな局所幾何学的特徴をエンコードし、明示的な局所密度測定を行うディープメッセージパス方式を利用する。
対照的に、以下の層はグローバルコンテキストベクトルを含む。
これらのアーキテクチャ選択により、QuadrANNは、置換不変で局所点密度と全体領域形状の両方に適応するデータ駆動の二次規則を生成することができる。
我々は,凸領域と非凸領域の統合や,熱およびフォッカー・プランク方程式の解を推定するなど,一連の挑戦的なテストケースで方法論を検証した。
全てのテストで、QuadrANNは積分推定の分散を標準のQuadi-Monte Carlo法と比較して減らし、積分が特異点を示す臨界領域において点雲をより密度の高いものにする。
この領域の臨界領域の安定性の向上はエネルギー汎関数の最適化に不可欠であり、深層学習に基づく変分解法の改善につながる。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
非構造点雲から指向性正規項を推定するための頑健な精錬法を提案する。
我々のフレームワークは、初期指向の正規性を洗練させるために、特徴空間に符号配向とデータ拡張を組み込んでいる。
従来手法に存在した騒音による方向の不整合の問題に対処するため, チャンファー正規距離と呼ばれる新しい指標を導入する。
論文 参考訳(メタデータ) (2024-09-02T09:30:02Z) - Geometrically Inspired Kernel Machines for Collaborative Learning Beyond Gradient Descent [36.59087823764832]
本稿では,幾何学的にインスパイアされたカーネルマシンを用いた協調学習のための新しい数学的枠組みを開発する。
分類問題に対しては、与えられたデータ点の周りの有界な幾何学構造を学習することができる。
論文 参考訳(メタデータ) (2024-07-05T08:20:27Z) - Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks [64.39488944424095]
本稿では,Message-Passing Monte Carlo という低差点集合を生成する機械学習手法を提案する。
MPMC点は、低次元と少数の点との差に関して、最適かほぼ最適であることが実証的に示されている。
論文 参考訳(メタデータ) (2024-05-23T21:17:20Z) - Operator Learning with Neural Fields: Tackling PDEs on General
Geometries [15.65577053925333]
偏微分方程式を解くための機械学習アプローチは、関数空間間の学習写像を必要とする。
新しいコーラル法は、いくつかの一般的な制約に基づいてPDEのための座標ベースのネットワークを利用する。
論文 参考訳(メタデータ) (2023-06-12T17:52:39Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
本稿では,点雲上での新しい差分畳み込み探索パラダイムを提案する。
純粋にデータ駆動型であり、幾何学的形状モデリングに適した畳み込みのグループを自動生成することができる。
また,内部畳み込みと外部アーキテクチャの同時探索のための共同最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-29T14:42:03Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。