論文の概要: Geometry-Aware Spiking Graph Neural Network
- arxiv url: http://arxiv.org/abs/2508.06793v1
- Date: Sat, 09 Aug 2025 02:52:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.551044
- Title: Geometry-Aware Spiking Graph Neural Network
- Title(参考訳): Geometry-Aware Spiking Graph Neural Network
- Authors: Bowen Zhang, Genan Dai, Hu Huang, Long Lan,
- Abstract要約: 本稿では,スパイクに基づくニューラルダイナミクスを適応表現学習と統合するGeometry-Aware Spiking Graph Neural Networkを提案する。
複数のベンチマーク実験により、GSGはユークリッドSNNと多様体ベースGNNと比較して精度、堅牢性、エネルギー効率が優れていることが示された。
- 参考スコア(独自算出の注目度): 12.090703243733373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have demonstrated impressive capabilities in modeling graph-structured data, while Spiking Neural Networks (SNNs) offer high energy efficiency through sparse, event-driven computation. However, existing spiking GNNs predominantly operate in Euclidean space and rely on fixed geometric assumptions, limiting their capacity to model complex graph structures such as hierarchies and cycles. To overcome these limitations, we propose \method{}, a novel Geometry-Aware Spiking Graph Neural Network that unifies spike-based neural dynamics with adaptive representation learning on Riemannian manifolds. \method{} features three key components: a Riemannian Embedding Layer that projects node features into a pool of constant-curvature manifolds, capturing non-Euclidean structures; a Manifold Spiking Layer that models membrane potential evolution and spiking behavior in curved spaces via geometry-consistent neighbor aggregation and curvature-based attention; and a Manifold Learning Objective that enables instance-wise geometry adaptation through jointly optimized classification and link prediction losses defined over geodesic distances. All modules are trained using Riemannian SGD, eliminating the need for backpropagation through time. Extensive experiments on multiple benchmarks show that GSG achieves superior accuracy, robustness, and energy efficiency compared to both Euclidean SNNs and manifold-based GNNs, establishing a new paradigm for curvature-aware, energy-efficient graph learning.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はグラフ構造化データのモデリングにおいて素晴らしい能力を示し、スパイキングニューラルネットワーク(SNN)はスパースでイベント駆動の計算によって高いエネルギー効率を提供する。
しかし、既存のスパイクGNNはユークリッド空間で主に機能し、固定された幾何学的仮定に依存し、それらの能力は階層やサイクルのような複雑なグラフ構造をモデル化することに制限される。
これらの制限を克服するために,リーマン多様体上の適応的表現学習を伴うスパイクベースニューラルネットワークを統一する新しい幾何対応スパイキンググラフニューラルネットワークである 'method{} を提案する。
ノード特徴を定数曲率多様体のプールに射影し、非ユークリッド構造を捕捉するリーマン・エンベディング層、幾何学的に一貫性のある近傍の集約と曲率に基づく注意を通して曲線空間における膜電位の進化とスパイク挙動をモデル化するマニフォールドスパイキング層、共同最適化された分類とジオデシック距離で定義されたリンク予測損失によるインスタンスワイドな幾何学的適応を可能にするマニフォールド学習対象である。
すべての加群はリーマン SGD を用いて訓練され、時間の経過とともにバックプロパゲーションの必要がなくなる。
複数のベンチマークにおいて、GSGはユークリッドSNNと多様体ベースGNNの両方と比較して精度、堅牢性、エネルギー効率に優れており、曲率を考慮したエネルギー効率の高いグラフ学習のための新しいパラダイムを確立している。
関連論文リスト
- Adaptive Riemannian Graph Neural Networks [29.859977834688625]
グラフ上の連続および異方性計量テンソル場を学習する新しいフレームワークを導入する。
これにより各ノードがその最適な局所幾何学を決定でき、モデルがグラフの構造的景観に流動的に適応できる。
本手法は, ヘテロ親和性ベンチマークとホモ親和性ベンチマークの双方において, 優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-04T16:55:02Z) - Can we ease the Injectivity Bottleneck on Lorentzian Manifolds for Graph Neural Networks? [0.0]
Lorentzian Graph Isomorphic Network (LGIN)は、Lorentzianモデル内での識別性を高めるために設計された新しいHGNNである。
LGINは、強力で差別性の高いGNNアーキテクチャの原理をリーマン多様体に適応させた最初のものである。
論文 参考訳(メタデータ) (2025-03-31T18:49:34Z) - Spiking Graph Neural Network on Riemannian Manifolds [51.15400848660023]
グラフニューラルネットワーク(GNN)は、グラフの学習において支配的なソリューションとなっている。
既存のスパイク GNN はユークリッド空間のグラフを考慮し、構造幾何学を無視している。
マニフォールド値スパイキングGNN(MSG)を提案する。
MSGは従来のGNNよりも優れた性能とエネルギー効率を実現している。
論文 参考訳(メタデータ) (2024-10-23T15:09:02Z) - Spatiotemporal Learning on Cell-embedded Graphs [6.8090864965073274]
学習可能なセル属性をノードエッジメッセージパッシングプロセスに導入し,地域特性の空間依存性をよりよく把握する。
各種PDEシステムと1つの実世界のデータセットの実験は、CeGNNが他のベースラインモデルと比較して優れた性能を発揮することを示した。
論文 参考訳(メタデータ) (2024-09-26T16:22:08Z) - DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
Alleviating Over-squashing [72.70197960100677]
グラフ構造学習(GSL)はグラフニューラルネットワーク(GNN)を改良したグラフで強化する上で重要な役割を果たしている。
GSLソリューションは、通常、タスク固有の監督(ノード分類)による構造改善に焦点を当てるか、GNN自体の固有の弱点を見落としている。
本稿では,典型的なGNNにおけるオーバー・スカッシングの問題を効果的に緩和する,自己教師付きグラフ構造-機能共分法について検討する。
論文 参考訳(メタデータ) (2024-01-23T14:06:08Z) - Torsion Graph Neural Networks [21.965704710488232]
解析的トーション強化グラフニューラルネットワークモデルであるTorGNNを提案する。
われわれのTorGNNでは,各エッジに対して対応する局所単体複合体を同定し,解析トーションを算出する。
我々のTorGNNは両方のタスクにおいて優れた性能を達成でき、様々な最先端モデルより優れていることが判明した。
論文 参考訳(メタデータ) (2023-06-23T15:02:23Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
本稿では,多様体畳み込みフィルタと点次非線形性からなる多様体ニューラルネットワーク(MNN)を提案する。
要約すると、我々は大きなグラフの極限として多様体モデルに焦点を合わせ、MNNを構築するが、それでもMNNの離散化によってグラフニューラルネットワークを復活させることができる。
論文 参考訳(メタデータ) (2022-10-01T21:17:39Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。