論文の概要: Simulating Biological Intelligence: Active Inference with Experiment-Informed Generative Model
- arxiv url: http://arxiv.org/abs/2508.06980v1
- Date: Sat, 09 Aug 2025 13:26:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.63822
- Title: Simulating Biological Intelligence: Active Inference with Experiment-Informed Generative Model
- Title(参考訳): バイオインテリジェンスをシミュレーションする:実験インフォームド生成モデルによるアクティブ推論
- Authors: Aswin Paul, Moein Khajehnejad, Forough Habibollahi, Brett J. Kagan, Adeel Razi,
- Abstract要約: 実施エージェントの意思決定をモデル化するための,能動的推論に根ざしたフレームワークを提案する。
実験インフォームド生成モデルを用いて,シミュレーションゲーム環境における意思決定過程をシミュレートする。
知的意思決定における記憶に基づく学習と予測計画の役割について考察した。
- 参考スコア(独自算出の注目度): 2.003941363902692
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With recent and rapid advancements in artificial intelligence (AI), understanding the foundation of purposeful behaviour in autonomous agents is crucial for developing safe and efficient systems. While artificial neural networks have dominated the path to AI, recent studies are exploring the potential of biologically based systems, such as networks of living biological neuronal networks. Along with promises of high power and data efficiency, these systems may also inform more explainable and biologically plausible models. In this work, we propose a framework rooted in active inference, a general theory of behaviour, to model decision-making in embodied agents. Using experiment-informed generative models, we simulate decision-making processes in a simulated game-play environment, mirroring experimental setups that use biological neurons. Our results demonstrate learning in these agents, providing insights into the role of memory-based learning and predictive planning in intelligent decision-making. This work contributes to the growing field of explainable AI by offering a biologically grounded and scalable approach to understanding purposeful behaviour in agents.
- Abstract(参考訳): 近年の人工知能(AI)の急速な進歩により、自律エージェントにおける目的的行動の基礎を理解することは、安全で効率的なシステムを開発する上で不可欠である。
人工ニューラルネットワークがAIへの道のりを支配している一方で、最近の研究は生物神経ネットワークのネットワークのような生物学的基盤システムの可能性を探っている。
高い電力とデータ効率の約束に加えて、これらのシステムはより説明可能な、生物学的に妥当なモデルにも通知する。
本研究では,動作の一般的な理論である能動推論に根ざした枠組みを提案し,具体的エージェントの意思決定をモデル化する。
実験インフォームド生成モデルを用いて、シミュレーションされたゲームプレイ環境における意思決定過程をシミュレートし、生体ニューロンを用いた実験装置のミラーリングを行う。
本研究は,これらのエージェントにおける学習を実証し,知的意思決定における記憶に基づく学習と予測計画の役割について考察した。
この研究は、エージェントの目的的振る舞いを理解するための生物学的基盤とスケーラブルなアプローチを提供することによって、説明可能なAIの分野の成長に寄与する。
関連論文リスト
- Shifting Attention to You: Personalized Brain-Inspired AI Models [3.0128071072792366]
人間の行動洞察とミリ秒スケールのニューラルネットワークを微調整CLIPベースモデルに統合することで、修正されていないCLIPベースラインと比較して、行動性能が2倍になることを示す。
我々の研究は、適応型AIシステムを設計するための、新しい解釈可能なフレームワークを確立し、神経科学、パーソナライズドメディカル、人間とコンピュータの相互作用に幅広い意味を持つ。
論文 参考訳(メタデータ) (2025-02-07T04:55:31Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
我々は「AI科学者」を懐疑的な学習と推論が可能なシステムとして想定する。
バイオメディカルAIエージェントは、人間の創造性と専門知識と、大規模なデータセットを分析するAIの能力を組み合わせる。
AIエージェントは、仮想細胞シミュレーション、プログラム可能な表現型の制御、細胞回路の設計、新しい治療法の開発など、幅広い領域に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-04-03T16:08:01Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Information theoretic analysis of computational models as a tool to
understand the neural basis of behaviors [0.0]
今世紀最大の研究課題の1つは、脳の身体環境システムにおける行動の神経基盤を理解することである。
計算モデルは、モデルシステムを研究することができる別のフレームワークを提供する。
本稿では,計算モデルの情報理論解析が強力な研究手法であることを示すための紹介,レビュー,議論を行う。
論文 参考訳(メタデータ) (2021-06-02T02:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。