論文の概要: A Globally Optimal Analytic Solution for Semi-Nonnegative Matrix Factorization with Nonnegative or Mixed Inputs
- arxiv url: http://arxiv.org/abs/2508.07134v1
- Date: Sun, 10 Aug 2025 01:15:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.718899
- Title: A Globally Optimal Analytic Solution for Semi-Nonnegative Matrix Factorization with Nonnegative or Mixed Inputs
- Title(参考訳): 非負または混合入力をもつ半負行列因子分解のための大域的最適解法
- Authors: Lu Chenggang,
- Abstract要約: 我々はSemi-Non negative Factorization (semi-NMF)と呼ばれる新しいタイプの行列分解を開発する。
本手法が再構成誤差のグローバルな分解を実現することを実証する。
提案手法は, 理論的, 実証的両方の利点を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-Nonnegative Matrix Factorization (semi-NMF) extends classical Nonnegative Matrix Factorization (NMF) by allowing the basis matrix to contain both positive and negative entries, making it suitable for decomposing data with mixed signs. However, most existing semi-NMF algorithms are iterative, non-convex, and prone to local minima. In this paper, we propose a novel method that yields a globally optimal solution to the semi-NMF problem under the Frobenius norm, through an orthogonal decomposition derived from the scatter matrix of the input data. We rigorously prove that our solution attains the global minimum of the reconstruction error. Furthermore, we demonstrate that when the input matrix is nonnegative, our method often achieves lower reconstruction error than standard NMF algorithms, although unfortunately the basis matrix may not satisfy nonnegativity. In particular, in low-rank cases such as rank 1 or 2, our solution reduces exactly to a nonnegative factorization, recovering the NMF structure. We validate our approach through experiments on both synthetic data and the UCI Wine dataset, showing that our method consistently outperforms existing NMF and semi-NMF methods in terms of reconstruction accuracy. These results confirm that our globally optimal, non-iterative formulation offers both theoretical guarantees and empirical advantages, providing a new perspective on matrix factorization in optimization and data analysis.
- Abstract(参考訳): 半負行列因子分解(semi-Non negative Matrix Factorization, semi-NMF)は、基底行列に正と負の両方の成分を含ませることによって古典的非負行列因子分解(NMF)を拡張し、混合符号でデータを分解するのに好適である。
しかし、既存の半NMFアルゴリズムのほとんどは反復的であり、非凸であり、局所ミニマである。
本稿では,Frobeniusノルムの下での半NMF問題に対して,入力データの散乱行列から導出した直交分解により,大域的に最適解を求める手法を提案する。
我々は,本手法が再建誤差の最小値に達することを厳密に証明する。
さらに,入力行列が非負である場合,提案手法は標準NMFアルゴリズムよりも低い再構成誤差をしばしば達成するが,残念ながら基底行列は非負性を満たすことができない。
特にランク1やランク2のような低ランクの場合では、解はNMF構造を回復する非負の分解に正確に還元される。
提案手法は, 合成データとUCIワインデータセットを用いた実験により, 既存のNMF法と半NMF法を再現精度で一貫して上回っていることを示す。
これらの結果は, 理論的保証と経験的優位性の両方を提供し, 最適化における行列分解とデータ解析の新たな視点を提供する。
関連論文リスト
- A Fresh Look at Generalized Category Discovery through Non-negative Matrix Factorization [83.12938977698988]
Generalized Category Discovery (GCD) は、ラベル付きベースデータを用いて、ベース画像と新規画像の両方を分類することを目的としている。
現在のアプローチでは、コサイン類似性に基づく共起行列 $barA$ の固有の最適化に不適切に対処している。
本稿では,これらの欠陥に対処するNon-Negative Generalized Category Discovery (NN-GCD) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T07:24:11Z) - Contaminated Images Recovery by Implementing Non-negative Matrix
Factorisation [0.0]
我々は,従来のNMF,HCNMF,L2,1-NMFアルゴリズムのロバスト性を理論的に検討し,ORLおよび拡張YaleBデータセットのロバスト性を示す実験セットを実行する。
これらの手法の計算コストのため、HCNMFやL2,1-NMFモデルのような最終モデルは、この研究のパラメータに収束しない。
論文 参考訳(メタデータ) (2022-11-08T13:50:27Z) - Orthogonal Nonnegative Matrix Factorization with Sparsity Constraints [0.0]
本稿では,空間制約付き直交非負行列因子分解(SCONMF)問題に対する新しいアプローチを提案する。
容量制約のある施設配置問題としてSCONMFを再構成することにより, 提案手法は非負性, 直交性, 疎性制約を自然に統合する。
具体的には,動的最適制御設計問題に使用される制御バリア関数(CBF)に基づくフレームワークと,施設配置問題に使用される最大エントロピー原理に基づくフレームワークを統合し,ロバストな因子化を確保しつつ,これらの制約を強制する。
論文 参考訳(メタデータ) (2022-10-06T04:30:59Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
我々は,Symmetric NMF問題に対するSymNMF-Netと呼ばれるニューラルネットワークを提案する。
各ブロックの推測は最適化の単一イテレーションに対応することを示す。
実世界のデータセットに関する実証的な結果は、我々のSymNMF-Netの優位性を示している。
論文 参考訳(メタデータ) (2022-05-26T08:17:39Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
NMF(Nonnegative Matrix Factorization)は、広く使用されているデータ分析技術であり、多くの実際のタスクで印象的な結果をもたらしました。
本研究では,上述の問題に対処するために,EMMF (Entropy Minimizing Matrix Factorization framework) を開発した。
通常、外れ値が通常のサンプルよりもはるかに小さいことを考えると、行列分解のために新しいエントロピー損失関数が確立される。
論文 参考訳(メタデータ) (2021-03-24T21:08:43Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Sparse Separable Nonnegative Matrix Factorization [22.679160149512377]
非負行列分解(NMF)の新しい変種を提案する。
分離性は、第1NMF因子の列が入力行列の列に等しいのに対して、スパース性は第2NMF因子の列がスパースであることが要求される。
雑音のない環境では、軽微な仮定の下で、我々のアルゴリズムが真に根底にある情報源を復元することを証明する。
論文 参考訳(メタデータ) (2020-06-13T03:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。