論文の概要: Using Large Language Models to Measure Symptom Severity in Patients At Risk for Schizophrenia
- arxiv url: http://arxiv.org/abs/2508.10226v1
- Date: Wed, 13 Aug 2025 22:47:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.130479
- Title: Using Large Language Models to Measure Symptom Severity in Patients At Risk for Schizophrenia
- Title(参考訳): 統合失調症患者の症状重症度測定に大規模言語モデルを用いた検討
- Authors: Andrew X. Chen, Guillermo Horga, Sean Escola,
- Abstract要約: Bref Psychiatric Rating Scale (BPRS) は、統合失調症および他の精神疾患患者の症状を測定するための検証済み、一般的に使用される研究ツールである。
そこで我々は,大言語モデル(LLM)を用いて,409名のCHR患者の臨床面接書からBPRSスコアを予測する。
- 参考スコア(独自算出の注目度): 0.1755623101161125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Patients who are at clinical high risk (CHR) for schizophrenia need close monitoring of their symptoms to inform appropriate treatments. The Brief Psychiatric Rating Scale (BPRS) is a validated, commonly used research tool for measuring symptoms in patients with schizophrenia and other psychotic disorders; however, it is not commonly used in clinical practice as it requires a lengthy structured interview. Here, we utilize large language models (LLMs) to predict BPRS scores from clinical interview transcripts in 409 CHR patients from the Accelerating Medicines Partnership Schizophrenia (AMP-SCZ) cohort. Despite the interviews not being specifically structured to measure the BPRS, the zero-shot performance of the LLM predictions compared to the true assessment (median concordance: 0.84, ICC: 0.73) approaches human inter- and intra-rater reliability. We further demonstrate that LLMs have substantial potential to improve and standardize the assessment of CHR patients via their accuracy in assessing the BPRS in foreign languages (median concordance: 0.88, ICC: 0.70), and integrating longitudinal information in a one-shot or few-shot learning approach.
- Abstract(参考訳): 統合失調症の臨床リスクの高い患者は、適切な治療を知らせるために、症状を綿密に監視する必要がある。
BPRS(Bref Psychiatric Rating Scale)は、統合失調症や他の精神疾患患者の症状を測定するための検証済みの、一般的な研究ツールである。
そこで我々は,AMP-SCZコホートによるCHR409例の臨床面接書からBPRSスコアを予測するために,大規模言語モデル(LLMs)を用いた。
BPRSを測定するために特別に構成されていないインタビューにもかかわらず、LCM予測のゼロショット性能は、実際の評価(中間一致:0.84、ICC:0.73)と比べて人間間および無線間の信頼性に近づいた。
さらに,LPMは,外国語におけるBPRS評価の精度(中期一致:0.88,ICC:0.70)と,単発または少数発の学習アプローチにおける経時的情報の統合により,CHR患者の評価を改善・標準化する有意義な可能性を実証した。
関連論文リスト
- Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
集中治療室(ICUs)の高血圧性腎疾患(HKD)患者は短期的死亡率が高い。
我々は,HKDのICU患者に対して,30日間の院内死亡を予測できる機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2025-07-25T00:48:23Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVDは、英国バイオバンクから50万人以上の参加者を対象に、大規模な言語モデルに基づいて構築された適応可能なCVDリスク予測フレームワークである。
包括的かつ可変的な患者情報を柔軟に取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して新規患者の集団に迅速に適応する。
論文 参考訳(メタデータ) (2025-05-30T14:42:02Z) - Detecting PTSD in Clinical Interviews: A Comparative Analysis of NLP Methods and Large Language Models [6.916082619621498]
外傷後ストレス障害 (PTSD) は, 臨床現場ではまだ診断されていない。
本研究では,臨床面接書からPTSDを検出するための自然言語処理手法について検討した。
論文 参考訳(メタデータ) (2025-04-01T22:06:28Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
MedR-Benchは1,453例の構造化患者のベンチマークデータセットで、推論基準を付した注釈付きである。
本稿では,3つの批判的診察勧告,診断決定,治療計画を含む枠組みを提案し,患者のケアジャーニー全体をシミュレートする。
このベンチマークを用いて、DeepSeek-R1、OpenAI-o3-mini、Gemini-2.0-Flash Thinkingなど、最先端の5つのLCMを評価した。
論文 参考訳(メタデータ) (2025-03-06T18:35:39Z) - Explainable AI for Mental Health Emergency Returns: Integrating LLMs with Predictive Modeling [2.466324275447403]
救急部門(ED)は精神状態の回復が大きな医療負担となり、患者の24-27%が30日以内に帰国する。
大規模言語モデル(LLM)と機械学習を統合することにより、EDメンタルヘルスリターンリスクモデルの予測精度と臨床的解釈性が向上するか否かを評価する。
論文 参考訳(メタデータ) (2025-01-21T15:41:20Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - A Scalable Workflow to Build Machine Learning Classifiers with
Clinician-in-the-Loop to Identify Patients in Specific Diseases [10.658425378457363]
臨床医は、EHR(Electronic Health Records)から疾患のある患者を識別するために、ICD(International Classification of Diseases)などの医療コーディングシステムを利用することができる。
近年の研究では、ICD符号は、実際の臨床実践において特定の疾患に対して、患者を正確に特徴づけることができないことが示唆されている。
本稿では,構造化データと非構造化テキストノートの両方を,NLP,AutoML,Cysian-in-the-Loop機構などの技術で活用するスケーラブルなワークフローを提案する。
論文 参考訳(メタデータ) (2022-05-18T12:24:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。