論文の概要: MOCHA: Discovering Multi-Order Dynamic Causality in Temporal Point Processes
- arxiv url: http://arxiv.org/abs/2508.18873v1
- Date: Tue, 26 Aug 2025 09:47:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.789102
- Title: MOCHA: Discovering Multi-Order Dynamic Causality in Temporal Point Processes
- Title(参考訳): MOCHA: 時間点過程における多次動的因果関係の発見
- Authors: Yunyang Cao, Juekai Lin, Wenhao Li, Bo Jin,
- Abstract要約: MOCHAは、時間点過程における多階動的因果関係を発見するための新しいフレームワークである。
我々は,MOCHAがイベント予測における最先端性能を実現し,意味的かつ解釈可能な因果構造を明らかにした。
- 参考スコア(独自算出の注目度): 10.64307837085301
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Discovering complex causal dependencies in temporal point processes (TPPs) is critical for modeling real-world event sequences. Existing methods typically rely on static or first-order causal structures, overlooking the multi-order and time-varying nature of causal relationships. In this paper, we propose MOCHA, a novel framework for discovering multi-order dynamic causality in TPPs. MOCHA characterizes multi-order influences as multi-hop causal paths over a latent time-evolving graph. To model such dynamics, we introduce a time-varying directed acyclic graph (DAG) with learnable structural weights, where acyclicity and sparsity constraints are enforced to ensure structural validity. We design an end-to-end differentiable framework that jointly models causal discovery and TPP dynamics, enabling accurate event prediction and revealing interpretable structures. Extensive experiments on real-world datasets demonstrate that MOCHA not only achieves state-of-the-art performance in event prediction, but also reveals meaningful and interpretable causal structures.
- Abstract(参考訳): 時間的ポイントプロセス(TPP)における複雑な因果依存性を明らかにすることは、実世界のイベントシーケンスをモデル化するのに重要である。
既存の手法は典型的には静的または一階因果構造に依存しており、因果関係の多階・時間変化の性質を見渡す。
本稿では,TPPの動的因果関係を発見するための新しいフレームワークMOCHAを提案する。
MOCHAは、遅延時間進化グラフ上のマルチホップ因果経路としてマルチオーダーの影響を特徴づける。
このような力学をモデル化するために、学習可能な構造重み付き時間変化有向非巡回グラフ(DAG)を導入する。
我々は、因果発見とTPPのダイナミクスを共同でモデル化し、正確な事象予測と解釈可能な構造を明らかにする、エンドツーエンドの微分可能なフレームワークを設計する。
実世界のデータセットに対する大規模な実験により、MOCHAはイベント予測における最先端のパフォーマンスを達成するだけでなく、意味があり、解釈可能な因果構造を明らかにする。
関連論文リスト
- Causal Discovery in Multivariate Time Series through Mutual Information Featurization [0.1657441317977376]
時間的因果関係(TD2C)は、情報理論と統計的記述の豊富なセットから複雑な因果的シグネチャを認識することを学ぶ。
以上の結果から,TD2Cは最先端の性能を達成し,確立された手法を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2025-08-03T17:03:13Z) - Learning Time-Aware Causal Representation for Model Generalization in Evolving Domains [50.66049136093248]
動的因果要因と因果機構のドリフトを組み込んだ時間認識型構造因果モデル(SCM)を開発した。
本研究では,時間領域毎に最適な因果予測値が得られることを示す。
合成と実世界の両方のデータセットの結果から,SynCは時間的一般化性能に優れることが示された。
論文 参考訳(メタデータ) (2025-06-21T14:05:37Z) - Learning Structural Causal Models from Ordering: Identifiable Flow Models [19.99352354910655]
本稿では,変数の可逆変換を部品的に再現するフローモデルを提案する。
本稿では,すべての因果メカニズムの同時学習を可能にする設計改善を提案する。
本手法は,既存の拡散法に比べて計算時間を大幅に短縮する。
論文 参考訳(メタデータ) (2024-12-13T04:25:56Z) - Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations [14.828081841581296]
MTPP(マークド・テンポラル・ポイント・プロセス)は、イベント・タイム・データの集合である。
近年の研究では、ディープニューラルネットワークを使用してイベントの複雑な時間的依存関係をキャプチャしている。
本稿では,プロセスの特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T10:15:32Z) - Neural Persistence Dynamics [8.197801260302642]
時間発展する点雲のトポロジにおける力学を学習する問題を考察する。
提案したモデル - $textitNeural Persistence Dynamics$ - は、パラメータ回帰タスクの多種多様なセットで最先端のパフォーマンスを大幅に上回る。
論文 参考訳(メタデータ) (2024-05-24T17:20:18Z) - Beyond DAGs: A Latent Partial Causal Model for Multimodal Learning [80.44084021062105]
本稿では,非方向エッジで連結された2つの潜在結合変数を特徴とする,多モーダルデータに対する新しい潜在部分因果モデルを提案する。
特定の統計的仮定の下では、多モーダル・コントラッシブ・ラーニングによって学習された表現が、自明な変換までの潜在結合変数に対応することを示す。
事前トレーニングされたCLIPモデルの実験は、非絡み合った表現を具現化し、数ショットの学習を可能にし、さまざまな現実世界のデータセットにわたるドメインの一般化を改善する。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
本稿では,DAG(Directed Acyclic Graph)を並列に学習する新しい手法であるCASTORを提案する。
我々は我々の枠組みの中で体制とDAGの識別可能性を確立する。
実験により、CASTORは既存の因果発見モデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2023-11-02T17:26:49Z) - An Empirical Study: Extensive Deep Temporal Point Process [61.14164208094238]
本稿では,非同期イベントシーケンスを時間的プロセスでモデル化することの課題と最近の研究を概観する。
本稿では,多種類のイベント間の関係を生かしたGranger因果発見フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-19T10:15:00Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
因果発見は人間の認知の中心にある。
本研究では,ビデオの因果発見の課題を,地層構造を監督せずにエンドツーエンドで検討する。
論文 参考訳(メタデータ) (2020-07-01T17:29:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。