論文の概要: Data-Augmented Few-Shot Neural Stencil Emulation for System Identification of Computer Models
- arxiv url: http://arxiv.org/abs/2508.19441v1
- Date: Tue, 26 Aug 2025 21:22:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.429661
- Title: Data-Augmented Few-Shot Neural Stencil Emulation for System Identification of Computer Models
- Title(参考訳): データ強化Few-Shot Neural Stencil Emulationによるコンピュータモデルのシステム同定
- Authors: Sanket Jantre, Deepak Akhare, Xiaoning Qian, Nathan M. Urban,
- Abstract要約: 部分方程式(PDE)は多くの自然および工学的なシステムのモデリングの基盤となる。
ニューラルネットワーク表現でPDEの支配方程式の一部または全部を置き換えることで、ニューラルPDEのようなモデルを表現するのが便利である。
本稿では,コンピュータモデルからニューラルPDEトレーニングデータを生成するための,より効率的なデータ拡張戦略を提案する。
- 参考スコア(独自算出の注目度): 13.794891110913776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial differential equations (PDEs) underpin the modeling of many natural and engineered systems. It can be convenient to express such models as neural PDEs rather than using traditional numerical PDE solvers by replacing part or all of the PDE's governing equations with a neural network representation. Neural PDEs are often easier to differentiate, linearize, reduce, or use for uncertainty quantification than the original numerical solver. They are usually trained on solution trajectories obtained by long time integration of the PDE solver. Here we propose a more sample-efficient data-augmentation strategy for generating neural PDE training data from a computer model by space-filling sampling of local "stencil" states. This approach removes a large degree of spatiotemporal redundancy present in trajectory data and oversamples states that may be rarely visited but help the neural PDE generalize across the state space. We demonstrate that accurate neural PDE stencil operators can be learned from synthetic training data generated by the computational equivalent of 10 timesteps' worth of numerical simulation. Accuracy is further improved if we assume access to a single full-trajectory simulation from the computer model, which is typically available in practice. Across several PDE systems, we show that our data-augmented synthetic stencil data yield better trained neural stencil operators, with clear performance gains compared with naively sampled stencil data from simulation trajectories.
- Abstract(参考訳): 偏微分方程式 (Partial differential equation, PDE) は、多くの自然および工学的なシステムのモデリングの基盤となる。
従来の数値PDEソルバを使用するよりも、PDEの支配方程式の一部または全部をニューラルネットワーク表現に置き換えることで、ニューラルPDEのようなモデルを表現するのが便利である。
ニューラルPDEは、元の数値解法よりも微分、線形化、還元、不確かさの定量化によく用いられる。
これらは通常、PDEソルバの長時間の統合によって得られる解軌跡に基づいて訓練される。
本稿では,局所的なステンシル状態の空間充填サンプリングにより,コンピュータモデルからニューラルPDEトレーニングデータを生成するための,より効率的なデータ拡張手法を提案する。
このアプローチは、トラジェクトリデータやオーバーサンプル状態に存在する多くの時空間冗長性を取り除くが、ニューラルPDEが状態空間全体にわたって一般化するのに役立つ。
本研究では,10時間ステップの数値計算値に相当する合成トレーニングデータから,正確なPDEステンシル演算子を学習できることを実証した。
コンピュータモデルから1つの全軌道シミュレーションへのアクセスを前提とすれば,さらに精度が向上する。
いくつかのPDEシステムにおいて,我々のデータ拡張合成ステンシルデータにより,より訓練されたニューラルステンシル演算子が得られることを示す。
関連論文リスト
- Mechanistic PDE Networks for Discovery of Governing Equations [52.492158106791365]
データから偏微分方程式を発見するためのモデルであるメカニスティックPDEネットワークを提案する。
表現されたPDEは解決され、特定のタスクのためにデコードされる。
線形偏微分方程式に特化して、ネイティブ、GPU対応、並列、スパース、微分可能多重グリッドソルバを開発した。
論文 参考訳(メタデータ) (2025-02-25T17:21:44Z) - Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning [45.78096783448304]
本研究では,PDE演算子学習のための教師なし事前学習を設計する。
シミュレーションソリューションを使わずにラベルなしのPDEデータをマイニングし、物理に着想を得た再構成ベースのプロキシタスクでニューラルネットワークを事前訓練する。
提案手法は,データ効率が高く,より一般化可能であり,従来の視覚予測モデルよりも優れる。
論文 参考訳(メタデータ) (2024-02-24T06:27:33Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
数値実験により, 非線形力学系から, 極めてノイズの多いデータで支配方程式を発見できることを示す。
論文 参考訳(メタデータ) (2023-09-14T12:34:42Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
複素データ分布を雑音を注入することによって既知の事前分布に変換する微分方程式を提案する。
対応する逆時間SDEは、ノイズを緩やかに除去し、先行分布をデータ分布に戻す。
スコアベース生成モデリングの進歩を活用することで、これらのスコアをニューラルネットワークで正確に推定することができる。
スコアベース生成モデルから1024×1024画像の高忠実度生成を初めて示す。
論文 参考訳(メタデータ) (2020-11-26T19:39:10Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。