論文の概要: Physics-constrained robust learning of open-form partial differential equations from limited and noisy data
- arxiv url: http://arxiv.org/abs/2309.07672v2
- Date: Mon, 29 Apr 2024 09:29:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:54:37.987139
- Title: Physics-constrained robust learning of open-form partial differential equations from limited and noisy data
- Title(参考訳): 有限および雑音データを用いた開形式偏微分方程式の物理制約付きロバスト学習
- Authors: Mengge Du, Yuntian Chen, Longfeng Nie, Siyu Lou, Dongxiao Zhang,
- Abstract要約: 本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
数値実験により, 非線形力学系から, 極めてノイズの多いデータで支配方程式を発見できることを示す。
- 参考スコア(独自算出の注目度): 1.50528618730365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unveiling the underlying governing equations of nonlinear dynamic systems remains a significant challenge. Insufficient prior knowledge hinders the determination of an accurate candidate library, while noisy observations lead to imprecise evaluations, which in turn result in redundant function terms or erroneous equations. This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data. The framework operates through two alternating update processes: discovering and embedding. The discovering phase employs symbolic representation and a novel reinforcement learning (RL)-guided hybrid PDE generator to efficiently produce diverse open-form PDEs with tree structures. A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs. PDEs with higher rewards are utilized to iteratively optimize the generator via the RL strategy and the best-performing PDE is selected by a parameter-free stability metric. The embedding phase integrates the initially identified PDE from the discovering process as a physical constraint into the predictive model for robust training. The traversal of PDE trees automates the construction of the computational graph and the embedding process without human intervention. Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data and outperform other physics-informed neural network-based discovery methods. This work opens new potential for exploring real-world systems with limited understanding.
- Abstract(参考訳): 非線形力学系の支配方程式の解法は依然として大きな課題である。
不十分な事前知識は正確な候補ライブラリの決定を妨げ、ノイズの多い観測は不正確な評価を導き、結果として冗長な関数項や誤式をもたらす。
本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
このフレームワークは,2つの更新プロセス – 発見と埋め込み – を通じて動作する。
発見フェーズはシンボル表現と新しい強化学習(RL)誘導ハイブリッドPDEジェネレータを用いて、ツリー構造を持つ多様なオープンフォームPDEを効率的に生成する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
高い報酬を持つPDEを用いて、RL戦略を介してジェネレータを反復的に最適化し、パラメータフリー安定度で最良のPDEを選択する。
埋め込みフェーズは、発見過程から最初に特定されたPDEを物理的制約として、堅牢なトレーニングのための予測モデルに統合する。
PDEツリーのトラバースは、人間の介入なしに計算グラフと埋め込みプロセスの構築を自動化する。
数値実験により,非線形力学系から高ノイズなデータを用いて制御方程式を抽出し,他の物理インフォームドニューラルネットワークによる探索法より優れていることを示す。
この研究は、限られた知識で現実世界のシステムを探索する新たな可能性を開く。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Partial-differential-algebraic equations of nonlinear dynamics by Physics-Informed Neural-Network: (I) Operator splitting and framework assessment [51.3422222472898]
偏微分代数方程式の解法として, 新規な物理情報ネットワーク(PINN)の構築法が提案されている。
これらの新しい手法には PDE 形式があり、これは未知の従属変数が少ない低レベル形式からより従属変数を持つ高レベル形式へと進化している。
論文 参考訳(メタデータ) (2024-07-13T22:48:17Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Noise-aware Physics-informed Machine Learning for Robust PDE Discovery [5.746505534720594]
この研究は、物理系の制御偏微分方程式(PDE)の発見に関係している。
既存の手法では、有限観測からPDEの同定を実証しているが、ノイズデータに対する満足度を維持できなかった。
本稿では、任意の分布に従うデータからPDEを管理するためのノイズ対応物理インフォームド機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-26T15:29:07Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Discovering Nonlinear PDEs from Scarce Data with Physics-encoded
Learning [11.641708412097659]
ノイズや少ないデータからPDEを発見するための物理符号化離散学習フレームワークを提案する。
3つの非線形PDEシステムに対して,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-01-28T07:49:48Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - PDE-READ: Human-readable Partial Differential Equation Discovery using
Deep Learning [0.0]
本稿では、2つのRational Neural Networksと原則付きスパース回帰アルゴリズムを用いたPDE発見のための新しいアプローチを提案する。
熱, バーガース, コルテヴェーグ・ド・ブリーズ方程式を顕著な整合性で同定することに成功した。
我々のアプローチは、空間とノイズの両方に対して前例のない堅牢であり、したがって実世界の観測データに適用できる。
論文 参考訳(メタデータ) (2021-11-01T15:00:16Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
本稿では,PDEポイントの集合を介してPDE情報を導入し,標準クリグ法と同様の後方予測を行うPDE Informed Kriging Model (PIK)を提案する。
学習性能をさらに向上させるために,PDEポイントをデザインし,PIKモデルと測定データに基づいたPDE情報を活用するアクティブPIKフレームワーク(APIK)を提案する。
論文 参考訳(メタデータ) (2020-12-22T02:31:26Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。