論文の概要: Musculoskeletal simulation of limb movement biomechanics in Drosophila melanogaster
- arxiv url: http://arxiv.org/abs/2509.06426v1
- Date: Mon, 08 Sep 2025 08:21:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.014686
- Title: Musculoskeletal simulation of limb movement biomechanics in Drosophila melanogaster
- Title(参考訳): ショウジョウバエの肢運動生体機構の筋骨格シミュレーション
- Authors: Pembe Gizem Özdil, Chuanfang Ning, Jasper S. Phelps, Sibo Wang-Chen, Guy Elisha, Alexander Blanke, Auke Ijspeert, Pavan Ramdya,
- Abstract要約: ショウジョウバエの足の最初の3Dデータ駆動筋骨格モデルを紹介した。
複数の固定標本からの高分解能X線スキャンに基づくヒル型筋肉表現を応用した。
本モデルにより, 実験的に抽出可能なモデル生物における運動制御の解明が可能となった。
- 参考スコア(独自算出の注目度): 32.89880065783502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational models are critical to advance our understanding of how neural, biomechanical, and physical systems interact to orchestrate animal behaviors. Despite the availability of near-complete reconstructions of the Drosophila melanogaster central nervous system, musculature, and exoskeleton, anatomically and physically grounded models of fly leg muscles are still missing. These models provide an indispensable bridge between motor neuron activity and joint movements. Here, we introduce the first 3D, data-driven musculoskeletal model of Drosophila legs, implemented in both OpenSim and MuJoCo simulation environments. Our model incorporates a Hill-type muscle representation based on high-resolution X-ray scans from multiple fixed specimens. We present a pipeline for constructing muscle models using morphological imaging data and for optimizing unknown muscle parameters specific to the fly. We then combine our musculoskeletal models with detailed 3D pose estimation data from behaving flies to achieve muscle-actuated behavioral replay in OpenSim. Simulations of muscle activity across diverse walking and grooming behaviors predict coordinated muscle synergies that can be tested experimentally. Furthermore, by training imitation learning policies in MuJoCo, we test the effect of different passive joint properties on learning speed and find that damping and stiffness facilitate learning. Overall, our model enables the investigation of motor control in an experimentally tractable model organism, providing insights into how biomechanics contribute to generation of complex limb movements. Moreover, our model can be used to control embodied artificial agents to generate naturalistic and compliant locomotion in simulated environments.
- Abstract(参考訳): 計算モデルは、神経、生体力学、物理的システムが動物の行動のオーケストレーションにどのように作用するかを理解するために重要である。
ショウジョウバエの中枢神経系、筋肉、および外骨格のほぼ完全な再構築が可能であるにもかかわらず、解剖学的および物理的に固定されたフライ脚筋のモデルがまだ欠落している。
これらのモデルは、運動ニューロンの活動と関節運動の間に必須の橋渡しを提供する。
本稿では, ショウジョウバエ脚の3次元データ駆動筋骨格モデルについて紹介し, シミュレーション環境として OpenSim と MuJoCo の両方で実装した。
複数の固定標本からの高分解能X線スキャンに基づくヒル型筋肉表現を応用した。
形態画像データを用いて筋モデルを構築するパイプラインと、ハエ特有の未知の筋パラメータを最適化するパイプラインを提案する。
筋骨格モデルと運動するハエの詳細な3次元ポーズ推定データを組み合わせて、OpenSimで筋肉を活性化した行動リプレイを実現する。
様々な歩行行動およびグルーミング行動における筋活動のシミュレーションは、実験的にテスト可能な協調筋シナジーを予測する。
さらに,MuJoCoにおける模倣学習政策の訓練により,異なる受動的関節特性が学習速度に及ぼす影響を検証し,減衰と剛性が学習を促進することを確認する。
本モデルにより, 生体力学が複雑な手足運動の発生にどのように寄与するかを考察し, 運動制御の解明が可能となった。
さらに,本モデルを用いて人工エージェントを制御し,模擬環境下での自然主義的かつ従順な移動を生成する。
関連論文リスト
- Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control [47.423243831156285]
筋運動制御の理解を深めるために,モデルフリー運動模倣フレームワーク(KINESIS)を提案する。
我々は,KINESISが1.9時間のモーションキャプチャデータに対して強い模倣性能を達成できることを実証した。
キネシスはヒトの筋活動とよく相関する筋活動パターンを生成する。
論文 参考訳(メタデータ) (2025-03-18T18:37:49Z) - Learning Speed-Adaptive Walking Agent Using Imitation Learning with Physics-Informed Simulation [0.0]
生体力学的に現実的な動作を維持しつつ、様々な歩行速度に適応できる骨格型ヒューマノイド剤を開発した。
このフレームワークは、オープンソースのバイオメカニクスデータから生体力学的に妥当な歩行運動を生産する合成データジェネレータと、エージェントの歩行ポリシーを訓練するために逆模倣学習を使用する訓練システムとを組み合わせる。
論文 参考訳(メタデータ) (2024-12-05T07:55:58Z) - Muscles in Time: Learning to Understand Human Motion by Simulating Muscle Activations [64.98299559470503]
マッスル・イン・タイム (MinT) は、大規模な人工筋肉活性化データセットである。
227名の被験者と402名の模擬筋骨格をカバーする9時間以上のシミュレーションデータを含んでいる。
ヒトのポーズ配列からニューラルネットワークを用いた筋活動量推定の結果を示す。
論文 参考訳(メタデータ) (2024-10-31T18:28:53Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - From Motion to Muscle [0.0]
筋活動は, 位置, 速度, 加速度などの運動特徴に基づいて人工的に生成できることを示す。
このモデルは、以前に訓練された運動に対して顕著な精度を達成し、これまで訓練されていない新しい運動に対して非常に高い精度を維持している。
論文 参考訳(メタデータ) (2022-01-27T13:30:17Z) - OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical
Locomotion [8.849771760994273]
MuJoCoシミュレータに基づくオストリッチの3次元筋骨格シミュレーションを作成した。
このモデルは、実際の筋肉データを集めるために使用されるCTスキャンと解剖に基づいている。
また,レファレンス・モーション・トラッキングや,ネック付きリーチ・タスクなど,一連の強化学習タスクも提供する。
論文 参考訳(メタデータ) (2021-12-11T19:58:11Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - Reinforcement Learning of Musculoskeletal Control from Functional
Simulations [3.94716580540538]
本研究は、深部強化学習(DRL)に基づく逆動力学制御器を用いて、人間の肩の生体力学的モデルによる筋活動の制御を訓練する。
その結果,無作為に発生する角軌道に追従する作業に対して,肩下降の単一軸運動制御を行うことができた。
論文 参考訳(メタデータ) (2020-07-13T20:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。