論文の概要: Variational Rank Reduction Autoencoders for Generative
- arxiv url: http://arxiv.org/abs/2509.08515v1
- Date: Wed, 10 Sep 2025 11:45:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.410354
- Title: Variational Rank Reduction Autoencoders for Generative
- Title(参考訳): 世代別変量低減オートエンコーダ
- Authors: Alicia Tierz, Jad Mounayer, Beatriz Moya, Francisco Chinesta,
- Abstract要約: 複雑なジオメトリーのための生成熱設計は、工学の多くの分野において基本的なものである。
高忠実度シミュレーションの計算コストと従来の生成モデルの限界という2つの大きな課題に直面している。
本稿では,変分ランク自動エンコーダ(VRRAE)とDeep Operator Networks(DeepONets)を組み合わせたハイブリッドフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.099922236065961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative thermal design for complex geometries is fundamental in many areas of engineering, yet it faces two main challenges: the high computational cost of high-fidelity simulations and the limitations of conventional generative models. Approaches such as autoencoders (AEs) and variational autoencoders (VAEs) often produce unstructured latent spaces with discontinuities, which restricts their capacity to explore designs and generate physically consistent solutions. To address these limitations, we propose a hybrid framework that combines Variational Rank-Reduction Autoencoders (VRRAEs) with Deep Operator Networks (DeepONets). The VRRAE introduces a truncated SVD within the latent space, leading to continuous, interpretable, and well-structured representations that mitigate posterior collapse and improve geometric reconstruction. The DeepONet then exploits this compact latent encoding in its branch network, together with spatial coordinates in the trunk network, to predict temperature gradients efficiently and accurately. This hybrid approach not only enhances the quality of generated geometries and the accuracy of gradient prediction, but also provides a substantial advantage in inference efficiency compared to traditional numerical solvers. Overall, the study underscores the importance of structured latent representations for operator learning and highlights the potential of combining generative models and operator networks in thermal design and broader engineering applications.
- Abstract(参考訳): 複雑なジオメトリのための生成熱設計は、多くの工学分野において基本的なものであるが、高忠実度シミュレーションの計算コストと従来の生成モデルの限界という2つの大きな課題に直面している。
オートエンコーダ (AE) や変分オートエンコーダ (VAE) のようなアプローチは、しばしば不連続性を持つ非構造ラテント空間を生成する。
これらの制約に対処するために,VRRAEとDeep Operator Networks(DeepONets)を組み合わせたハイブリッドフレームワークを提案する。
VRRAEは、潜伏空間内に散在するSVDを導入し、連続的、解釈可能、構造化された表現をもたらし、後部崩壊を緩和し、幾何学的再構成を改善する。
DeepONetは、このコンパクトな潜伏エンコーディングを、トランクネットワーク内の空間座標とともに、効率的に正確に温度勾配を予測するために活用する。
このハイブリッドアプローチは、生成されたジオメトリの品質と勾配予測の精度を高めるだけでなく、従来の数値解法と比較して推論効率に大きな利点をもたらす。
全体として、この研究は、演算子学習における構造化潜在表現の重要性を強調し、熱設計とより広範な工学的応用における生成モデルと演算子ネットワークの組み合わせの可能性を強調している。
関連論文リスト
- Autoencoder-based non-intrusive model order reduction in continuum mechanics [0.0]
連続体力学における低次モデリングのための非侵入型オートエンコーダに基づくフレームワークを提案する。
i) 教師なしオートエンコーダは、高次元有限要素解をコンパクトな潜在空間に圧縮し、(ii) 教師付き回帰ネットワークは、問題のパラメータを潜在符号にマッピングし、(iii) エンドツーエンドのサロゲートは入力パラメータから直接、フルフィールドの解を再構成する。
論文 参考訳(メタデータ) (2025-09-02T12:05:00Z) - Revisiting the Privacy Risks of Split Inference: A GAN-Based Data Reconstruction Attack via Progressive Feature Optimization [49.32786615205064]
Split Inference (SI)は、エッジデバイスとクラウドの間の計算を分割することで、レイテンシを低減し、ユーザのプライバシを保護する。
データ再構成攻撃(DRA)の最近の進歩は、SIで交換された中間的特徴を利用して機密入力データを復元できることを明らかにしている。
既存のDRAは一般的に浅いモデルにのみ有効であり、セマンティックな事前を十分に活用できない。
本稿では,プログレッシブ・フィーチャー・オプティマイゼーション(PFO)を用いた新しいGANベースのDRAフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-28T10:00:39Z) - STAR: Synthesis of Tailored Architectures [61.080157488857516]
本稿では, 適合型アーキテクチャ (STAR) の新規な合成手法を提案する。
提案手法は線形入力可変系の理論に基づく新しい探索空間を結合し,階層的な数値エンコーディングをアーキテクチャゲノムに支持する。STARゲノムは,複数のモデル品質と効率の指標に最適化するために,勾配のない進化的アルゴリズムで自動的に精製・組換えされる。
STARを用いて、多種多様な計算単位と相互接続パターンを活用し、品質、パラメータサイズ、および自動回帰言語モデリングのための推論キャッシュのフロンティアにおける高度に最適化されたトランスフォーマーとストライプハイブリッドモデルを改善する。
論文 参考訳(メタデータ) (2024-11-26T18:42:42Z) - Beyond the Kolmogorov Barrier: A Learnable Weighted Hybrid Autoencoder for Model Order Reduction [0.8021197489470758]
我々は,コルモゴロフ障壁を克服するために,学習可能な重み付きハイブリッドオートエンコーダを提案する。
トレーニングされたモデルは、他のモデルに比べて何千倍もシャープさが小さいことを実証的に見出した。
論文 参考訳(メタデータ) (2024-10-23T00:04:26Z) - Predicting Transonic Flowfields in Non-Homogeneous Unstructured Grids Using Autoencoder Graph Convolutional Networks [0.0]
本稿では,計算流体力学(CFD)においてよく用いられる非均一非構造格子による問題に対処することに焦点を当てる。
我々のアプローチの核となるのは幾何学的深層学習、特にグラフ畳み込みネットワーク(GCN)の利用である。
新規なAutoencoder GCNアーキテクチャは、情報を遠隔ノードに伝播し、影響力のある点を強調することにより、予測精度を向上させる。
論文 参考訳(メタデータ) (2024-05-07T15:18:21Z) - Introducing a microstructure-embedded autoencoder approach for reconstructing high-resolution solution field data from a reduced parametric space [0.0]
我々は,パラメトリック空間情報を標準オートエンコーダアーキテクチャに組み込むことで,低忠実度解写像を高忠実度に変換する新しい多忠実深層学習手法を開発した。
パラメトリック空間情報の統合により、低忠実度から高忠実度解を効果的に予測するためのトレーニングデータの必要性が大幅に低減される。
論文 参考訳(メタデータ) (2024-05-03T10:00:36Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
長期の数値安定性を確保するためには,システムに関連するシンプレクティックな構造を維持することが重要である。
本稿では,次元削減のための確立されたツールであるオートエンコーダの精神の中で,新しいニューラルネットワークアーキテクチャを提案する。
ネットワークのトレーニングには,非標準勾配降下法を適用した。
論文 参考訳(メタデータ) (2023-12-15T18:20:25Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。