論文の概要: Introducing a microstructure-embedded autoencoder approach for reconstructing high-resolution solution field data from a reduced parametric space
- arxiv url: http://arxiv.org/abs/2405.01975v2
- Date: Tue, 7 May 2024 11:28:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 13:00:13.510874
- Title: Introducing a microstructure-embedded autoencoder approach for reconstructing high-resolution solution field data from a reduced parametric space
- Title(参考訳): 縮小パラメトリック空間からの高分解能解場データ再構成のためのマイクロ構造埋め込みオートエンコーダ手法の導入
- Authors: Rasoul Najafi Koopas, Shahed Rezaei, Natalie Rauter, Richard Ostwald, Rolf Lammering,
- Abstract要約: 我々は,パラメトリック空間情報を標準オートエンコーダアーキテクチャに組み込むことで,低忠実度解写像を高忠実度に変換する新しい多忠実深層学習手法を開発した。
パラメトリック空間情報の統合により、低忠実度から高忠実度解を効果的に予測するためのトレーニングデータの必要性が大幅に低減される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this study, we develop a novel multi-fidelity deep learning approach that transforms low-fidelity solution maps into high-fidelity ones by incorporating parametric space information into a standard autoencoder architecture. This method's integration of parametric space information significantly reduces the need for training data to effectively predict high-fidelity solutions from low-fidelity ones. In this study, we examine a two-dimensional steady-state heat transfer analysis within a highly heterogeneous materials microstructure. The heat conductivity coefficients for two different materials are condensed from a 101 x 101 grid to smaller grids. We then solve the boundary value problem on the coarsest grid using a pre-trained physics-informed neural operator network known as Finite Operator Learning (FOL). The resulting low-fidelity solution is subsequently upscaled back to a 101 x 101 grid using a newly designed enhanced autoencoder. The novelty of the developed enhanced autoencoder lies in the concatenation of heat conductivity maps of different resolutions to the decoder segment in distinct steps. Hence the developed algorithm is named microstructure-embedded autoencoder (MEA). We compare the MEA outcomes with those from finite element methods, the standard U-Net, and various other upscaling techniques, including interpolation functions and feedforward neural networks (FFNN). Our analysis shows that MEA outperforms these methods in terms of computational efficiency and error on test cases. As a result, the MEA serves as a potential supplement to neural operator networks, effectively upscaling low-fidelity solutions to high fidelity while preserving critical details often lost in traditional upscaling methods, particularly at sharp interfaces like those seen with interpolation.
- Abstract(参考訳): 本研究では,パラメトリック空間情報を標準オートエンコーダアーキテクチャに組み込むことにより,低忠実度解写像を高忠実度に変換する新しい多忠実深層学習手法を提案する。
パラメトリック空間情報の統合により、低忠実度から高忠実度解を効果的に予測するためのトレーニングデータの必要性が大幅に低減される。
本研究では,高均一材料組織中の2次元定常熱伝達解析について検討した。
2つの異なる材料の熱伝導係数を101×101格子からより小さな格子に凝縮する。
次に、FOL(Finite Operator Learning)と呼ばれる、事前訓練された物理インフォームドニューラルネットワークを用いて、粗いグリッド上の境界値問題を解く。
結果として生じる低忠実度ソリューションは、新たに設計された拡張オートエンコーダを使用して、101 x 101グリッドにアップスケールされる。
改良された自己エンコーダの新規性は、異なる解像度の熱伝導率マップを異なるステップでデコーダセグメントに連結することにある。
したがって、開発したアルゴリズムは、MEA (microstructure-embedded autoencoder) と呼ばれる。
本稿では, 有限要素法, 標準U-Net, および補間関数やフィードフォワードニューラルネットワーク(FFNN)を含む様々なアップスケーリング手法とMEAの結果を比較した。
解析の結果,MEAはテストケースにおける計算効率や誤差の観点から,これらの手法よりも優れていることがわかった。
その結果、MEAは神経オペレーターネットワークの潜在的サプリメントとして機能し、特に補間で見られるような鋭いインターフェイスにおいて、従来のアップスケーリング手法でしばしば失われる重要な詳細を保ちながら、低忠実度ソリューションを高忠実度に効果的にアップスケーリングする。
関連論文リスト
- Predicting Transonic Flowfields in Non-Homogeneous Unstructured Grids Using Autoencoder Graph Convolutional Networks [0.0]
本稿では,計算流体力学(CFD)においてよく用いられる非均一非構造格子による問題に対処することに焦点を当てる。
我々のアプローチの核となるのは幾何学的深層学習、特にグラフ畳み込みネットワーク(GCN)の利用である。
新規なAutoencoder GCNアーキテクチャは、情報を遠隔ノードに伝播し、影響力のある点を強調することにより、予測精度を向上させる。
論文 参考訳(メタデータ) (2024-05-07T15:18:21Z) - A finite operator learning technique for mapping the elastic properties of microstructures to their mechanical deformations [0.0]
本稿では,有限要素法の中核となる概念を物理インフォームドニューラルネットワークと統合し,ニューラル演算子の概念を提案する。
このアプローチは各手法を一般化し、他のリソースのデータに頼ることなく、機械的問題に対するパラメトリック解を学習する。
論文 参考訳(メタデータ) (2024-03-28T19:57:48Z) - Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling [19.60087366873302]
マルチフィデリティ・サロゲートモデリングは,最も高いフィデリティレベルで正確なサロゲートを学習することを目的としている。
ディープラーニングアプローチでは、ニューラルネットワークベースのエンコーダとデコーダを使用してスケーラビリティを向上させる。
本稿では,MFRNP(Multi-fidelity Residual Neural Processs)を提案する。
論文 参考訳(メタデータ) (2024-02-29T04:40:25Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
部分オフロードにおける効果的な意味抽出と圧縮のための新しい意味圧縮手法であるオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
セマンティックエンコーダでは、CNNのチャネルアテンション機構に基づく特徴圧縮モジュールを導入し、最も情報性の高い特徴を選択して中間データを圧縮する。
セマンティックデコーダでは、受信した圧縮データから学習して中間データを再構築し、精度を向上させる軽量デコーダを設計する。
論文 参考訳(メタデータ) (2024-01-19T15:19:47Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
我々は,エンコーダデコーダに基づく条件付きGeneLSTM層を用いたニューラルネットワークに基づく新しいフレームワークを開発し,Cahn-Hilliardマイクロ構造方程式を解く。
トレーニングされたモデルはメッシュとスケールに依存しないため、効果的なニューラル演算子としての応用が保証される。
論文 参考訳(メタデータ) (2022-11-22T08:32:22Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Level-Set Curvature Neural Networks: A Hybrid Approach [0.0]
レベルセット法で平均曲率を計算するための深層学習に基づくハイブリッド戦略を提案する。
提案手法は,改良回帰モデルの辞書と標準数値スキームを組み合わせて,曲率をより正確に推定する。
機械学習は、レベルセット手法の数値的欠点に対する実行可能な解決策を考案する有望な場であることを確認した。
論文 参考訳(メタデータ) (2021-04-07T06:51:52Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。