論文の概要: A Real-Time Multi-Model Parametric Representation of Point Clouds
- arxiv url: http://arxiv.org/abs/2509.14773v1
- Date: Thu, 18 Sep 2025 09:23:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-19 17:26:53.143776
- Title: A Real-Time Multi-Model Parametric Representation of Point Clouds
- Title(参考訳): 点雲の実時間マルチモデルパラメトリック表現
- Authors: Yuan Gao, Wei Dong,
- Abstract要約: 実時間表面検出とフィッティングを併用したマルチモデルパラメトリック表現を提案する。
この表現は、低消費電力のオンボードコンピュータ上で36.4fpsで動作するガウス混合モデルよりも精度が2倍向上する。
- 参考スコア(独自算出の注目度): 10.870258776225294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, parametric representations of point clouds have been widely applied in tasks such as memory-efficient mapping and multi-robot collaboration. Highly adaptive models, like spline surfaces or quadrics, are computationally expensive in detection or fitting. In contrast, real-time methods, such as Gaussian mixture models or planes, have low degrees of freedom, making high accuracy with few primitives difficult. To tackle this problem, a multi-model parametric representation with real-time surface detection and fitting is proposed. Specifically, the Gaussian mixture model is first employed to segment the point cloud into multiple clusters. Then, flat clusters are selected and merged into planes or curved surfaces. Planes can be easily fitted and delimited by a 2D voxel-based boundary description method. Surfaces with curvature are fitted by B-spline surfaces and the same boundary description method is employed. Through evaluations on multiple public datasets, the proposed surface detection exhibits greater robustness than the state-of-the-art approach, with 3.78 times improvement in efficiency. Meanwhile, this representation achieves a 2-fold gain in accuracy over Gaussian mixture models, operating at 36.4 fps on a low-power onboard computer.
- Abstract(参考訳): 近年、ポイントクラウドのパラメトリック表現は、メモリ効率のマッピングや複数ロボットの協調といったタスクに広く応用されている。
スプライン表面や四角形のような適応性の高いモデルは、検出やフィッティングにおいて計算コストがかかる。
対照的に、ガウス混合モデルや平面のようなリアルタイムの手法は自由度が低く、プリミティブがほとんどない場合、高精度である。
この問題に対処するために,実時間表面検出とフィッティングを併用したマルチモデルパラメトリック表現を提案する。
具体的には、ガウス混合モデルは、まず点雲を複数のクラスタに分割するために使用される。
そして、フラットクラスタを選択して、平面または曲面にマージする。
平面は2次元ボクセルによる境界記述法により容易に取り外しが可能である。
曲率を持つ表面をBスプライン面に取り付け、同じ境界記述法を用いる。
複数の公開データセットの評価を通じて、提案された表面検出は最先端のアプローチよりも堅牢性が高く、効率は3.78倍向上している。
一方、この表現は低消費電力のコンピュータ上で36.4fpsで動作するガウス混合モデルよりも精度が2倍向上する。
関連論文リスト
- Adaptive Point-Prompt Tuning: Fine-Tuning Heterogeneous Foundation Models for 3D Point Cloud Analysis [51.37795317716487]
本稿では,パラメータの少ない事前学習モデルを微調整するAdaptive Point-Prompt Tuning (APPT)法を提案する。
局所幾何学を集約することで原点雲を点埋め込みに変換し、空間的特徴を捉える。
任意のモダリティのソース領域から3Dへの自己アテンションを校正するために,重みを点埋め込みモジュールと共有するプロンプトジェネレータを導入する。
論文 参考訳(メタデータ) (2025-08-30T06:02:21Z) - Geometric Operator Learning with Optimal Transport [77.16909146519227]
複素測地上での偏微分方程式(PDE)に対する演算子学習に最適輸送(OT)を統合することを提案する。
表面に焦点を当てた3次元シミュレーションでは、OTベースのニューラルオペレーターが表面形状を2次元パラメータ化潜在空間に埋め込む。
ShapeNet-Car と DrivAerNet-Car を用いたレイノルズ平均化 Navier-Stokes 方程式 (RANS) を用いた実験により,提案手法は精度の向上と計算コストの削減を図った。
論文 参考訳(メタデータ) (2025-07-26T21:28:25Z) - MILo: Mesh-In-the-Loop Gaussian Splatting for Detailed and Efficient Surface Reconstruction [28.452920446301608]
3次元ガウスからメッシュを微分的に抽出することにより,体積表現と表面表現のギャップを埋める新しいフレームワークMILoを提案する。
提案手法では,従来の手法に比べてメッシュ頂点のオーダーを桁違いに少なくしつつ,背景を含む全シーンを最先端の品質で再構築することができる。
論文 参考訳(メタデータ) (2025-06-30T17:48:54Z) - DIMM: Decoupled Multi-hierarchy Kalman Filter for 3D Object Tracking [50.038098341549095]
状態推定は、高い操作性を持つ3次元物体追跡において困難である。
本稿では,各方向の異なる動きモデルから推定される推定を効果的に組み合わせる新しいフレームワークであるDIMMを提案する。
DIMMは既存の状態推定手法のトラッキング精度を31.61%99.23%向上させる。
論文 参考訳(メタデータ) (2025-05-18T10:12:41Z) - Learning Bijective Surface Parameterization for Inferring Signed Distance Functions from Sparse Point Clouds with Grid Deformation [50.26314343851213]
疎点雲から符号付き距離関数(SDF)を推定することは、表面再構成の課題である。
本稿では,SDFをエンドツーエンドに予測するために動的変形ネットワークを学習する新しい手法を提案する。
合成および実スキャンデータを用いた実験結果から,本手法は最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-03-31T02:27:02Z) - Distance and Collision Probability Estimation from Gaussian Surface Models [0.9208007322096533]
連続空間衝突確率推定は不確実性を考慮した運動計画に重要である。
ほとんどの衝突検出と回避アプローチは、ロボットが球体としてモデル化されていると仮定するが、楕円形表現はより厳密な近似を与える。
最先端の手法は、原点雲を加工することでユークリッド距離と勾配を導出する。
論文 参考訳(メタデータ) (2024-01-31T21:28:40Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
メッシュ変形は、動的シミュレーション、レンダリング、再構成を含む多くの3次元視覚タスクにおいて重要な役割を果たす。
現在のディープラーニングにおける一般的なアプローチは、2つのメッシュからランダムにサンプリングされた2つの点雲とシャンファーの擬似距離を比較することで、2つの面間の差を測定するセットベースアプローチである。
本稿では,メッシュのスライスされたワッサーシュタイン距離を,セットベースアプローチを一般化する確率測度として表現したメッシュ変形の学習指標を提案する。
論文 参考訳(メタデータ) (2023-05-27T19:10:19Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
確率的3Dポイントクラウド登録法は、ノイズ、アウトレーヤ、密度変動を克服する競合性能を示した。
本稿では,一致したガウス混合モデル(GMM)パラメータから最適変換を演算する,重複誘導確率登録手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:02:33Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
本稿では,ノイズと密度の変動のある点群から正規性を正確に予測できるHSurf-Netという新しい正規推定手法を提案する。
実験結果から, HSurf-Netは, 合成形状データセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-10-13T16:39:53Z) - Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction [11.215334675788952]
本稿では,インスタンス平面セグメンテーションネットワークからのキューを用いたポーズ推定とマッピングを改善する意味平面SLAMシステムを提案する。
メインストリームのアプローチはRGB-Dセンサーを使用するが、そのようなシステムを備えた単眼カメラを使うことは、ロバストデータアソシエーションや正確な幾何モデルフィッティングといった課題に直面している。
論文 参考訳(メタデータ) (2021-08-09T18:16:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。