論文の概要: Solving Differential Equation with Quantum-Circuit Enhanced Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2509.16247v1
- Date: Wed, 17 Sep 2025 11:10:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:15.696429
- Title: Solving Differential Equation with Quantum-Circuit Enhanced Physics-Informed Neural Networks
- Title(参考訳): 量子回路強化物理インフォームドニューラルネットワークによる微分方程式の解法
- Authors: Rachana Soni,
- Abstract要約: 物理情報ニューラルネットワーク(PINN)と小さな量子回路から生成された特徴を組み合わせた,シンプルなハイブリッドフレームワークを提案する。
概念の証明として、量子測定確率をニューラルモデルに入力することで、一階方程式が解かれる。
解析結果は,ハイブリッドモデルが解析解を再現することを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I present a simple hybrid framework that combines physics informed neural networks (PINNs) with features generated from small quantum circuits. As a proof of concept, a first-order equation is solved by feeding quantum measurement probabilities into the neural model. The architecture enforces the initial condition exactly, and training is guided by the ODE residual loss. Numerical results show that the hybrid model reproduces the analytical solution, illustrating the potential of quantum-enhanced PINNs for differential equation solving.
- Abstract(参考訳): 物理情報ニューラルネットワーク(PINN)と小さな量子回路から生成された特徴を組み合わせた,シンプルなハイブリッドフレームワークを提案する。
概念の証明として、一階方程式は、量子測定確率をニューラルモデルに供給することで解決される。
アーキテクチャは初期条件を正確に強制し、トレーニングはODEの残留損失によってガイドされる。
数値計算の結果, ハイブリッドモデルは解析解を再現し, 微分方程式解の量子化PINNの可能性を示した。
関連論文リスト
- Variational quantum and neural quantum states algorithms for the linear complementarity problem [1.2796203864160849]
変分量子アルゴリズム(VQA)は、有望なハイブリッド量子古典法である。
本稿では、変分量子線形解法(VQLS)とその古典的量子状態に基づく古典的ニューラルネットワーク線形解法(VNLS)の新たな応用について述べる。
我々は,VNLSを用いて衝突時の剛球体の力学を正確にシミュレートすることを示した。
論文 参考訳(メタデータ) (2025-04-10T22:03:14Z) - QCPINN: Quantum-Classical Physics-Informed Neural Networks for Solving PDEs [0.70224924046445]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)を解くための有望な方法として登場した。
本稿では、量子と古典成分を組み合わせた量子古典物理学インフォームドニューラルネットワーク(QCPINN)を提案する。
論文 参考訳(メタデータ) (2025-03-20T19:52:26Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Analytic theory for the dynamics of wide quantum neural networks [7.636414695095235]
本研究では,変分量子機械学習モデルの学習誤差に対する勾配降下のダイナミクスについて検討する。
ランダムな量子回路では、残差トレーニング誤差の指数的減衰をシステムのパラメータの関数として予測し、特徴付ける。
論文 参考訳(メタデータ) (2022-03-30T23:24:06Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
我々は、統計物理学における反応拡散方程式、量子力学におけるシュル・オーディンガー方程式、同軸光学におけるヘルムホルツ方程式を一般化する。
数値解を求めるためにNPDEを離散化するために有限差分法を用いる。
多層パーセプトロン、畳み込みニューラルネットワーク、リカレントニューラルネットワークなど、ディープニューラルネットワークアーキテクチャの基本構築ブロックが生成される。
論文 参考訳(メタデータ) (2021-03-10T00:05:46Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。