論文の概要: Cross-Cultural Transfer of Commonsense Reasoning in LLMs: Evidence from the Arab World
- arxiv url: http://arxiv.org/abs/2509.19265v1
- Date: Tue, 23 Sep 2025 17:24:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.978218
- Title: Cross-Cultural Transfer of Commonsense Reasoning in LLMs: Evidence from the Arab World
- Title(参考訳): LLMにおけるコモンセンス推論の異文化間移動--アラブ世界からの証拠
- Authors: Saeed Almheiri, Rania Hossam, Mena Attia, Chenxi Wang, Preslav Nakov, Timothy Baldwin, Fajri Koto,
- Abstract要約: 本稿では,アラブ世界におけるコモンセンス推論の異文化間移動について検討する。
アラブ13カ国を対象とした文化基盤のコモンセンス推論データセットを用いて,軽量アライメント手法の評価を行った。
以上の結果から,他国の文化特有例は12例に過ぎず,他国の文化特有例を平均10%向上させることができた。
- 参考スコア(独自算出の注目度): 68.19795061447044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) often reflect Western-centric biases, limiting their effectiveness in diverse cultural contexts. Although some work has explored cultural alignment, the potential for cross-cultural transfer, using alignment in one culture to improve performance in others, remains underexplored. This paper investigates cross-cultural transfer of commonsense reasoning in the Arab world, where linguistic and historical similarities coexist with local cultural differences. Using a culturally grounded commonsense reasoning dataset covering 13 Arab countries, we evaluate lightweight alignment methods such as in-context learning and demonstration-based reinforcement (DITTO), alongside baselines like supervised fine-tuning and direct preference optimization. Our results show that merely 12 culture-specific examples from one country can improve performance in others by 10\% on average, within multilingual models. In addition, we demonstrate that out-of-culture demonstrations from Indonesia and US contexts can match or surpass in-culture alignment for MCQ reasoning, highlighting cultural commonsense transferability beyond the Arab world. These findings demonstrate that efficient cross-cultural alignment is possible and offer a promising approach to adapt LLMs to low-resource cultural settings.
- Abstract(参考訳): 大きな言語モデル(LLM)は西洋中心のバイアスを反映し、様々な文化的文脈においてその効果を制限する。
文化的なアライメントを探求する研究もあるが、文化間のトランスファーの可能性は、ある文化におけるアライメントを利用して、他の文化のパフォーマンスを改善することは、いまだに過小評価されている。
本稿では,言語的・歴史的類似性と地域文化の違いが共存するアラブ世界におけるコモンセンス推論の異文化間移動について検討する。
アラブ13カ国を対象とする文化基盤のコモンセンス推論データセットを用いて,教師付き微調整や直接選好最適化などのベースラインとともに,インコンテキスト学習やデモベース強化(DITTO)などの軽量アライメント手法の評価を行った。
この結果から,多言語モデルでは,他国の文化特化例が12例だけで平均10倍に向上することが示唆された。
さらに,インドネシアと米国の文化外の実証は,MCQ推論の文化的アライメントと一致するか,あるいは超える可能性があることを実証し,アラブ世界を超えて文化的なコモンセンスの伝達性を強調した。
これらの結果から, 効率的な異文化間アライメントが可能であり, LLMを低資源な文化環境に適応させる, 有望なアプローチが期待できることがわかった。
関連論文リスト
- MCEval: A Dynamic Framework for Fair Multilingual Cultural Evaluation of LLMs [25.128936333806678]
大規模な言語モデルは、文化的バイアスと限定的な文化的理解能力を示す。
動的文化的質問構築を用いた多言語評価フレームワークであるMCEvalを提案する。
論文 参考訳(メタデータ) (2025-07-13T16:24:35Z) - CulFiT: A Fine-grained Cultural-aware LLM Training Paradigm via Multilingual Critique Data Synthesis [41.261808170896686]
CulFiTは、多言語データと微粒な報酬モデリングを利用して、文化的感受性と傾きを高める新しいトレーニングパラダイムである。
本手法は,文化関連諸質問を合成し,文化関連言語における批判データを構築し,文化文献を検証可能な知識単位に分解するために,きめ細かい報酬を用いる。
論文 参考訳(メタデータ) (2025-05-26T04:08:26Z) - From Word to World: Evaluate and Mitigate Culture Bias via Word Association Test [48.623761108859085]
我々は,人中心語関連テスト(WAT)を拡張し,異文化間認知による大規模言語モデルのアライメントを評価する。
文化選好を緩和するために,カルチャー対応のステアリング機構を統合する革新的なアプローチであるCultureSteerを提案する。
論文 参考訳(メタデータ) (2025-05-24T07:05:10Z) - CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
大規模言語モデル(LLM)は、より深く様々な地域における人間の生活に統合される。
既存のアプローチは、文化固有のコーパスを微調整することで、文化的に整合したLCMを開発する。
本稿では,新しい文化データ構築フレームワークであるCAReDiOを紹介する。
論文 参考訳(メタデータ) (2025-04-09T13:40:13Z) - Cultural Learning-Based Culture Adaptation of Language Models [70.1063219524999]
大きな言語モデル(LLM)をさまざまな文化的価値に適用することは難しい課題です。
文化的学習に基づくLLMと文化的価値との整合性を高めるための新しい枠組みであるCLCAについて述べる。
論文 参考訳(メタデータ) (2025-04-03T18:16:26Z) - CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮している。
CultureVerseは大規模なマルチモーダルベンチマークで、682の文化的概念、188の国/地域、15の文化的概念、3の質問タイプをカバーしている。
本稿では,文化理解の大幅な向上を実現するために,我々のデータセットを微調整したVLMのシリーズであるCultureVLMを提案する。
論文 参考訳(メタデータ) (2025-01-02T14:42:37Z) - Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
本稿では,大規模言語モデルと多言語文化との整合性を実現するフレームワークであるCultureSPAを提案する。
カルチャー・アウェア/アウェアアウトプットを比較することで、カルチャー関連インスタンスを検出し、収集することができる。
広範囲な実験により、CultureSPAは、一般の能力を損なうことなく、多様な文化へのLCMのアライメントを著しく改善することが示された。
論文 参考訳(メタデータ) (2024-10-16T19:06:08Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。