論文の概要: PALQO: Physics-informed Model for Accelerating Large-scale Quantum Optimization
- arxiv url: http://arxiv.org/abs/2509.20733v1
- Date: Thu, 25 Sep 2025 04:26:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 20:58:12.690811
- Title: PALQO: Physics-informed Model for Accelerating Large-scale Quantum Optimization
- Title(参考訳): PALQO:大規模量子最適化高速化のための物理インフォームドモデル
- Authors: Yiming Huang, Yajie Hao, Jing Zhou, Xiao Yuan, Xiaoting Wang, Yuxuan Du,
- Abstract要約: 変分量子アルゴリズム(VQA)は、短期量子デバイスの実用性に到達するための主要な戦略である。
本稿では、非線形偏微分方程式としてVQAのトレーニング力学を再構成し、このシステムを効率的にモデル化するための新しいプロトコルを提案する。
提案手法は従来の手法に比べて最大30倍の高速化を実現し,最大40キュービットのタスクに対して最大90%の量子リソースコスト削減を実現する。
- 参考スコア(独自算出の注目度): 23.592808263108896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms (VQAs) are leading strategies to reach practical utilities of near-term quantum devices. However, the no-cloning theorem in quantum mechanics precludes standard backpropagation, leading to prohibitive quantum resource costs when applying VQAs to large-scale tasks. To address this challenge, we reformulate the training dynamics of VQAs as a nonlinear partial differential equation and propose a novel protocol that leverages physics-informed neural networks (PINNs) to model this dynamical system efficiently. Given a small amount of training trajectory data collected from quantum devices, our protocol predicts the parameter updates of VQAs over multiple iterations on the classical side, dramatically reducing quantum resource costs. Through systematic numerical experiments, we demonstrate that our method achieves up to a 30x speedup compared to conventional methods and reduces quantum resource costs by as much as 90\% for tasks involving up to 40 qubits, including ground state preparation of different quantum systems, while maintaining competitive accuracy. Our approach complements existing techniques aimed at improving the efficiency of VQAs and further strengthens their potential for practical applications.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)は、短期量子デバイスの実用性に到達するための主要な戦略である。
しかし、量子力学における非閉鎖定理は標準的なバックプロパゲーションを妨げ、VQAを大規模タスクに適用する際の量子リソースコストを禁ずる。
この課題に対処するため、非線形偏微分方程式としてVQAのトレーニング力学を再構成し、物理インフォームドニューラルネットワーク(PINN)を利用してこの力学系を効率的にモデル化する新しいプロトコルを提案する。
量子デバイスから収集された少量のトレーニングトラジェクトリデータから、我々のプロトコルは古典的側面の複数回にわたるVQAのパラメータ更新を予測し、量子リソースコストを劇的に削減する。
系統的な数値実験により,従来の手法と比較して最大30倍の高速化を実現し,競争精度を維持しつつ,異なる量子システムの基底状態作成を含む最大40キュービットのタスクにおいて,量子リソースコストを最大90%削減できることが実証された。
提案手法は,VQAの効率向上を目的とした既存の手法を補完し,実用化の可能性をさらに強化する。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Enhancing variational quantum algorithms by balancing training on classical and quantum hardware [1.8377902806196762]
量子ニューラルネットワークを用いた最大12キュービットハミルトニアンの変分量子固有解法(VQE)と量子位相分類
量子ニューラルネットワークを用いた最大12量子ビットハミルトニアンのVQEと量子位相分類を用いた6-18量子ハミルトニアンの基底状態推定手法の数値評価を行った。
論文 参考訳(メタデータ) (2025-03-20T17:17:58Z) - Programming Variational Quantum Circuits with Quantum-Train Agent [3.360429911727189]
可変量子回路(VQC)の効率的かつスケーラブルなプログラミングを容易にするQT-QFWP(Quantum-Train Quantum Fast Weight Programmer)フレームワークを提案する。
このアプローチは、量子と古典の両方のパラメータ管理を最適化することで、従来のハイブリッド量子古典モデルに対して大きな優位性をもたらす。
QT-QFWPは、関連モデルを効率性と予測精度の両方で上回り、より実用的で費用対効果の高い量子機械学習アプリケーションへの道筋を提供する。
論文 参考訳(メタデータ) (2024-12-02T06:26:09Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。