論文の概要: RED-DiffEq: Regularization by denoising diffusion models for solving inverse PDE problems with application to full waveform inversion
- arxiv url: http://arxiv.org/abs/2509.21659v1
- Date: Thu, 25 Sep 2025 22:28:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.055101
- Title: RED-DiffEq: Regularization by denoising diffusion models for solving inverse PDE problems with application to full waveform inversion
- Title(参考訳): RED-DiffEq:逆PDE問題に対する拡散モデルによる正規化と完全波形逆変換への応用
- Authors: Siming Shan, Min Zhu, Youzuo Lin, Lu Lu,
- Abstract要約: 偏微分方程式(PDE)が支配する逆問題(逆問題)は、様々な科学的・工学的応用において基本的な問題である。
我々は、物理駆動の逆転とデータ駆動学習を統合することにより、新しい計算フレームワークRED-DiffEqを導入する。
- 参考スコア(独自算出の注目度): 10.757623414065003
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Partial differential equation (PDE)-governed inverse problems are fundamental across various scientific and engineering applications; yet they face significant challenges due to nonlinearity, ill-posedness, and sensitivity to noise. Here, we introduce a new computational framework, RED-DiffEq, by integrating physics-driven inversion and data-driven learning. RED-DiffEq leverages pretrained diffusion models as a regularization mechanism for PDE-governed inverse problems. We apply RED-DiffEq to solve the full waveform inversion problem in geophysics, a challenging seismic imaging technique that seeks to reconstruct high-resolution subsurface velocity models from seismic measurement data. Our method shows enhanced accuracy and robustness compared to conventional methods. Additionally, it exhibits strong generalization ability to more complex velocity models that the diffusion model is not trained on. Our framework can also be directly applied to diverse PDE-governed inverse problems.
- Abstract(参考訳): 偏微分方程式(PDE)が支配する逆問題(英語版)は、様々な科学的・工学的応用において基本的な問題であるが、非線形性、不適切性、ノイズに対する感受性などの問題に直面している。
本稿では、物理駆動の逆転とデータ駆動学習を統合することにより、新しい計算フレームワークRED-DiffEqを紹介する。
RED-DiffEq は PDE-governed inverse 問題の正規化機構として事前学習した拡散モデルを利用する。
我々は、地震観測データから高分解能地下速度モデルを再構成する挑戦的な地震イメージング技術である地球物理学における全波形反転問題の解法としてRED-DiffEqを適用した。
本手法は従来の手法と比較して精度と頑健さが向上した。
さらに、拡散モデルが訓練されていないより複雑な速度モデルに対して、強力な一般化能力を示す。
我々のフレームワークは、様々なPDEが支配する逆問題にも直接適用できる。
関連論文リスト
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Stability and Generalizability in SDE Diffusion Models with Measure-Preserving Dynamics [11.919291977879801]
逆問題では、測定やデータから因果因子を推定する過程を記述する。
拡散モデルは、逆問題を解決する強力な生成ツールとして期待されている。
論文 参考訳(メタデータ) (2024-06-19T15:55:12Z) - ODE-DPS: ODE-based Diffusion Posterior Sampling for Inverse Problems in Partial Differential Equation [1.8356973269166506]
本稿では, PDE から生じる逆問題を解決するために, 教師なし逆転法を提案する。
提案手法はベイズ逆転フレームワーク内で動作し,後続分布の解法を条件付き生成過程として扱う。
インバージョン結果の精度を高めるために,ODEベースの拡散インバージョンアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-21T00:57:13Z) - Filtered Partial Differential Equations: a robust surrogate constraint in physics-informed deep learning framework [1.220743263007369]
そこで本研究では,従来の物理方程式のサロゲート制約(フィルタPDE,FPDE,略してFPDE)を提案し,ノイズおよびスパース観測データの影響を低減した。
ノイズ・スパシティ実験では、提案したFPDEモデルは従来のPDEモデルよりも堅牢性が高い。
実世界の実験データを物理インフォームドトレーニングに組み込むためには,提案したFPDE制約が有用である。
論文 参考訳(メタデータ) (2023-11-07T07:38:23Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
画素空間におけるトレーニング拡散モデルは、データ集約的かつ計算的に要求される。
非常に低次元空間で動作する潜在拡散モデルは、これらの課題に対する解決策を提供する。
我々は,事前学習した潜在拡散モデルを用いて,一般的な逆問題を解決するアルゴリズムであるtextitReSampleを提案する。
論文 参考訳(メタデータ) (2023-07-16T18:42:01Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
本稿では,最先端生成技術アプローチの潜時学習とエンドツーエンドの変分フレームワークを組み合わせた,新しい統合アーキテクチャ,潜時変分モデルを提案する。
我々の統一的アプローチは、非最新技術ベースラインの20倍以上の真理への分布自由距離を達成する。
論文 参考訳(メタデータ) (2023-05-17T17:43:10Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。