論文の概要: Meta-Learning Fourier Neural Operators for Hessian Inversion and Enhanced Variational Data Assimilation
- arxiv url: http://arxiv.org/abs/2509.22949v1
- Date: Fri, 26 Sep 2025 21:30:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:18.949536
- Title: Meta-Learning Fourier Neural Operators for Hessian Inversion and Enhanced Variational Data Assimilation
- Title(参考訳): ヘシアンインバージョンと拡張変分データ同化のためのメタラーニングフーリエニューラル演算子
- Authors: Hamidreza Moazzami, Asma Jamali, Nicholas Kevlahan, Rodrigo A. Vargas-Hernández,
- Abstract要約: 本稿では,FNO(Fourier Neural Operator)を用いたメタラーニングフレームワークを提案する。
線形対流方程式の数値実験により、結果として生じるFNO-CGアプローチにより、平均相対誤差が62%、反復回数が17%減少することを示した。
- 参考スコア(独自算出の注目度): 0.6999740786886536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data assimilation (DA) is crucial for enhancing solutions to partial differential equations (PDEs), such as those in numerical weather prediction, by optimizing initial conditions using observational data. Variational DA methods are widely used in oceanic and atmospheric forecasting, but become computationally expensive, especially when Hessian information is involved. To address this challenge, we propose a meta-learning framework that employs the Fourier Neural Operator (FNO) to approximate the inverse Hessian operator across a family of DA problems, thereby providing an effective initialization for the conjugate gradient (CG) method. Numerical experiments on a linear advection equation demonstrate that the resulting FNO-CG approach reduces the average relative error by $62\%$ and the number of iterations by $17\%$ compared to the standard CG. These improvements are most pronounced in ill-conditioned scenarios, highlighting the robustness and efficiency of FNO-CG for challenging DA problems.
- Abstract(参考訳): データ同化(DA)は、観測データを用いて初期条件を最適化することにより、数値天気予報などの偏微分方程式(PDE)の解を強化するために重要である。
変分DA法は海洋および大気予報に広く用いられているが、特にヘッセン情報に関わる場合、計算コストが高くなる。
この課題に対処するために,FNO(Fourier Neural Operator)を用いたメタラーニングフレームワークを提案する。
線形対流方程式の数値実験により、結果として生じるFNO-CGアプローチは、平均相対誤差を6,2\%$、反復回数を17\%$に下げることを示した。
これらの改善は、DA問題に対するFNO-CGの堅牢性と効率性を強調した、条件の悪いシナリオにおいて最も顕著である。
関連論文リスト
- PnP-DA: Towards Principled Plug-and-Play Integration of Variational Data Assimilation and Generative Models [0.1052166918701117]
地球系のモデリングは科学計算における根本的な課題である。
最も強力なAIや物理ベースの予測システムでさえ、徐々にエラーが蓄積される。
本稿では,背景予測に基づいて事前学習した事前条件を1つのフォワードパスで,軽量で勾配に基づく解析更新を置き換えるPlug-and-Playアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-08-01T05:19:19Z) - Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
分散サーバ(DFL)はクライアント・クライアント・アーキテクチャへの依存をなくす。
非滑らかな正規化はしばしば機械学習タスクに組み込まれる。
本稿では,これらの問題を解決する新しいDNCFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-17T08:32:25Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes [22.256068524699472]
本稿では,深いガウス過程に対するニューラル演算子変分推論(NOVI)を提案する。
NOVIは、ニューラルジェネレータを使用してサンプリング装置を取得し、生成された分布と真の後部の間のL2空間における正規化スタインの離散性を最小化する。
提案手法が提案するバイアスは定数で発散を乗算することで制御可能であることを示す。
論文 参考訳(メタデータ) (2023-09-22T06:56:35Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Physics-guided Data Augmentation for Learning the Solution Operator of
Linear Differential Equations [2.1850269949775663]
ニューラルネットワークモデルの精度と一般化を改善するために,物理誘導型データ拡張法(PGDA)を提案する。
様々な線形微分方程式におけるPGDAの利点を実証し、PGDAがサンプルの複雑さを向上し、分布シフトに頑健であることを示す。
論文 参考訳(メタデータ) (2022-12-08T06:29:15Z) - Evaluating the Adversarial Robustness for Fourier Neural Operators [78.36413169647408]
フーリエ・ニューラル・オペレータ(FNO)は、ゼロショット超解像で乱流をシミュレートした最初の人物である。
我々はノルム有界データ入力摂動に基づくFNOの逆例を生成する。
以上の結果から,モデルの強靭性は摂動レベルの増加とともに急速に低下することが明らかとなった。
論文 参考訳(メタデータ) (2022-04-08T19:19:42Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
効率的でスケーラブルな半単純外挿 (SIVI) を提案する。
本手法はSIVIの証拠を低勾配値の厳密な推測にマッピングする。
論文 参考訳(メタデータ) (2021-01-15T11:39:09Z) - Consistency analysis of bilevel data-driven learning in inverse problems [1.0705399532413618]
本稿では,データからの正規化パラメータの適応学習を最適化により検討する。
線形逆問題に対する我々のフレームワークの実装方法を示す。
勾配降下法を用いてオンライン数値スキームを導出する。
論文 参考訳(メタデータ) (2020-07-06T12:23:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。