論文の概要: Energy Guided Geometric Flow Matching
- arxiv url: http://arxiv.org/abs/2509.25230v1
- Date: Thu, 25 Sep 2025 00:42:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.181906
- Title: Energy Guided Geometric Flow Matching
- Title(参考訳): エネルギー誘導幾何フローマッチング
- Authors: Aaron Zweig, Mingxuan Zhang, Elham Azizi, David Knowles,
- Abstract要約: 時間的データに対して有用な帰納バイアスは、軌跡がデータ多様体に近づかなければならないことである。
従来のフローマッチングは直線的な条件付きパスに依存しており、測地学を学ぶフローマッチング手法は、次元性の呪いに苦しむRBFカーネルや近隣のグラフに依存している。
本稿では, スコアマッチングとエネルギー蒸留を用いて, 基礎となるデータ形状を忠実に捉え, より正確な流れを知らせる計量テンソルを学習することを提案する。
- 参考スコア(独自算出の注目度): 7.291396653006809
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A useful inductive bias for temporal data is that trajectories should stay close to the data manifold. Traditional flow matching relies on straight conditional paths, and flow matching methods which learn geodesics rely on RBF kernels or nearest neighbor graphs that suffer from the curse of dimensionality. We propose to use score matching and annealed energy distillation to learn a metric tensor that faithfully captures the underlying data geometry and informs more accurate flows. We demonstrate the efficacy of this strategy on synthetic manifolds with analytic geodesics, and interpolation of cell
- Abstract(参考訳): 時間的データに対して有用な帰納バイアスは、軌跡がデータ多様体に近づかなければならないことである。
従来のフローマッチングは直線的な条件付きパスに依存しており、測地学を学ぶフローマッチング手法は、次元性の呪いに苦しむRBFカーネルや近隣のグラフに依存している。
本稿では, スコアマッチングとアニールエネルギー蒸留を用いて, 基礎となるデータ形状を忠実に捉え, より正確な流れを知らせる計量テンソルを学習することを提案する。
解析測地学と細胞補間による合成多様体に対するこの戦略の有効性を実証する。
関連論文リスト
- What's Inside Your Diffusion Model? A Score-Based Riemannian Metric to Explore the Data Manifold [0.0]
スコアに基づくリーマン計量を導入し、データ多様体の内在幾何学を特徴づける。
我々のアプローチは、測地学が自然に多様体の輪郭に従う幾何学を生成する。
我々のスコアに基づく測地学は、基礎となるデータ分布を尊重する有意義な垂直変換を捉えていることを示す。
論文 参考訳(メタデータ) (2025-05-16T11:19:57Z) - Kernel Approximation of Fisher-Rao Gradient Flows [52.154685604660465]
本稿では,フィッシャー・ラオ型およびワッサーシュタイン型勾配流の勾配構造,流れ方程式,および核近似に関する厳密な研究を行う。
具体的には、フィッシャー・ラオ幾何学とその様々なカーネルに基づく近似に注目し、原理的な理論的枠組みを開発する。
論文 参考訳(メタデータ) (2024-10-27T22:52:08Z) - Metric Flow Matching for Smooth Interpolations on the Data Manifold [40.24392451848883]
Metric Flow Matching (MFM) は条件付きフローマッチングのための新しいシミュレーションフリーフレームワークである。
我々は,MFMを条件付き経路のフレームワークとして提案し,ソース分布をターゲット分布に変換する。
我々は、LiDARナビゲーション、未ペア画像翻訳、セルラーダイナミクスのモデリングなど、一連の課題でFMをテストする。
論文 参考訳(メタデータ) (2024-05-23T16:48:06Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。