論文の概要: Approximation of differential entropy in Bayesian optimal experimental design
- arxiv url: http://arxiv.org/abs/2510.00734v1
- Date: Wed, 01 Oct 2025 10:17:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.512223
- Title: Approximation of differential entropy in Bayesian optimal experimental design
- Title(参考訳): ベイズ最適実験設計における微分エントロピーの近似
- Authors: Chuntao Chen, Tapio Helin, Nuutti Hyvönen, Yuya Suzuki,
- Abstract要約: 設計から独立しているか、明示的に評価できるような設定において、期待される情報ゲインを推定することに集中する。
これにより、問題は最大エントロピー推定に還元され、期待される情報ゲインに固有のいくつかの課題が軽減される。
我々は,この戦略が,完全な情報取得推定のための最先端手法に匹敵する,あるいはそれ以上の収束率を達成することを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimal experimental design provides a principled framework for selecting experimental settings that maximize obtained information. In this work, we focus on estimating the expected information gain in the setting where the differential entropy of the likelihood is either independent of the design or can be evaluated explicitly. This reduces the problem to maximum entropy estimation, alleviating several challenges inherent in expected information gain computation. Our study is motivated by large-scale inference problems, such as inverse problems, where the computational cost is dominated by expensive likelihood evaluations. We propose a computational approach in which the evidence density is approximated by a Monte Carlo or quasi-Monte Carlo surrogate, while the differential entropy is evaluated using standard methods without additional likelihood evaluations. We prove that this strategy achieves convergence rates that are comparable to, or better than, state-of-the-art methods for full expected information gain estimation, particularly when the cost of entropy evaluation is negligible. Moreover, our approach relies only on mild smoothness of the forward map and avoids stronger technical assumptions required in earlier work. We also present numerical experiments, which confirm our theoretical findings.
- Abstract(参考訳): ベイズ最適実験設計は、得られた情報を最大化する実験的な設定を選択するための原則化された枠組みを提供する。
本研究では,確率の差分エントロピーが設計に依存しているか,明示的に評価できるような設定において,期待される情報ゲインを推定することに焦点を当てる。
これにより、問題を最大エントロピー推定に還元し、期待される情報に固有のいくつかの課題を和らげる。
本研究は,計算コストが高価な確率評価に支配される逆問題などの大規模推論問題に動機付けられている。
本稿では,モンテカルロあるいは準モンテカルロサロゲートを用いて証拠密度を近似する計算手法を提案する。
この戦略は,特にエントロピー評価のコストが無視可能な場合において,完全な情報獲得推定のための最先端手法に匹敵する,あるいはそれ以上の収束率を達成することを証明している。
さらに,本手法は前方マップの軽度な滑らかさにのみ依存し,先行作業に必要な技術的仮定の強化を回避する。
また,我々の理論的知見を裏付ける数値実験も行った。
関連論文リスト
- In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
償却点推定器は一般に後部推論より優れているが、後者は低次元問題では競争力がある。
実験の結果, 償却点推定器は一般に後部推定より優れているが, 後者は低次元問題では競争力があることがわかった。
論文 参考訳(メタデータ) (2025-02-17T10:00:24Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - PICProp: Physics-Informed Confidence Propagation for Uncertainty
Quantification [30.66285259412019]
本稿では, 決定論的偏微分方程式の信頼区間推定を新しい問題として導入し, 研究する。
つまり、データロケーションからドメイン全体への信頼性を、確率的な保証を持って、CI形式で広めるのです。
重大な仮定を行なわずに有効なCIを計算するための2レベル最適化に基づくPICPropと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-10-10T18:24:50Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
実験問題のA-最適ベイズ設計における計算効率について検討する。
A-最適性はベイズの実験設計に広く用いられ、容易に解釈できる基準である。
本研究は, A-Optimal 実験設計における新しい可能性のないアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-30T12:40:43Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
本稿では,設計ユーティリティ機能のためのカオス拡張サロゲートモデル(PCE)の開発のための新しいアプローチを提案する。
この手法により,対象関数に対する適切な品質応答面の導出が可能となり,計算予算は複数の単点評価に匹敵する。
論文 参考訳(メタデータ) (2020-08-10T09:42:59Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
最寄りの$gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
本手法は既存の不一致対策よりも高いロバスト性を実現する。
論文 参考訳(メタデータ) (2020-06-13T06:09:27Z) - Unbiased MLMC stochastic gradient-based optimization of Bayesian
experimental designs [4.112293524466434]
実験的な設計パラメータに対する期待情報ゲインの勾配は、ネスト予測によって与えられる。
我々は,期待される情報ゲインの勾配を,期待される$ell$-norm,期待されるサンプル当たりの計算コストで推定するモンテカルロ推定器を導入する。
論文 参考訳(メタデータ) (2020-05-18T01:02:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。