論文の概要: Gradient-enhanced global sensitivity analysis with Poincar{é} chaos expansions
- arxiv url: http://arxiv.org/abs/2510.03056v1
- Date: Fri, 03 Oct 2025 14:38:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 16:35:52.428056
- Title: Gradient-enhanced global sensitivity analysis with Poincar{é} chaos expansions
- Title(参考訳): Poincar{é}カオス展開によるグローバル感度解析
- Authors: O Roustant, N Lüthen, D Heredia, B Sudret,
- Abstract要約: カオス展開は、Sobolのインデックスを効率的に計算するために、グローバルな感度分析に使用される。
本稿では,近年の緩やかな勾配向上レグレッションを取り入れた勾配強化型GSAの包括的フレームワークを提案する。
本稿では,本手法の有効性を,挑戦的な洪水モデリングケーススタディに適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chaos expansions are widely used in global sensitivity analysis (GSA), as they leverage orthogonal bases of L2 spaces to efficiently compute Sobol' indices, particularly in data-scarce settings. When derivatives are available, we argue that a desirable property is for the derivatives of the basis functions to also form an orthogonal basis. We demonstrate that the only basis satisfying this property is the one associated with weighted Poincar{\'e} inequalities and Sturm-Liouville eigenvalue problems, which we refer to as the Poincar{\'e} basis. We then introduce a comprehensive framework for gradient-enhanced GSA that integrates recent advances in sparse, gradient-enhanced regression for surrogate modeling with the construction of weighting schemes for derivative-based sensitivity analysis. The proposed methodology is applicable to a broad class of probability measures and supports various choices of weights. We illustrate the effectiveness of the approach on a challenging flood modeling case study, where Sobol' indices are accurately estimated using limited data.
- Abstract(参考訳): カオス展開は、L2空間の直交基底を利用して、特にデータスカース設定のソボの指数を効率的に計算するため、グローバル感度分析(GSA)で広く用いられている。
微分が利用可能であるとき、望ましい性質は基底関数の微分が直交基底を形成することであると論じる。
この性質を満たす唯一の基礎は、重み付けされたポアンカルドエの不等式と、ストゥルム=リウヴィル固有値問題に関連付けられ、これはポアンカルドエ基底(英語版)(Poincar{\'e} basis)と呼ばれる。
次に,近年の疎度化・勾配化レグレッションと,微分型感度解析のための重み付けスキームの構築を統合した勾配化GSAの包括的フレームワークを提案する。
提案手法は幅広い種類の確率測度に適用でき、様々な重みの選択をサポートする。
本稿では,ソボの指標を限られたデータを用いて正確に推定する,挑戦的な洪水モデリングケーススタディにおけるアプローチの有効性について述べる。
関連論文リスト
- Identifiable Convex-Concave Regression via Sub-gradient Regularised Least Squares [1.9580473532948397]
複雑な入力関係を凸成分と凹成分の和としてモデル化する新しい非パラメトリック回帰法を提案する。
The method-ICCNLS-decomposes sub-constrained shape-constrained additive decomposition。
論文 参考訳(メタデータ) (2025-06-22T15:53:12Z) - Model-Free Kernel Conformal Depth Measures Algorithm for Uncertainty Quantification in Regression Models in Separable Hilbert Spaces [9.504740492278003]
本研究では,条件付き深度測定と統合深度測定に基づくモデルフリー不確実性定量化アルゴリズムを提案する。
新しいアルゴリズムは、予測器と応答が分離可能なヒルベルト空間で定義されるとき、予測領域と許容領域を定義するのに使うことができる。
身体活動に関するデジタルヘルスアプリケーションを通じて、我々のアプローチの実践的妥当性を実証する。
論文 参考訳(メタデータ) (2025-06-10T01:25:37Z) - Asymptotics of Non-Convex Generalized Linear Models in High-Dimensions: A proof of the replica formula [17.036996839737828]
非次元ガウス正規化モデルの最適性を証明するために,アルゴリズムをどのように利用できるかを示す。
また, 負の正則化モデルの最適性を証明するために, テューキー損失を用いる方法を示す。
論文 参考訳(メタデータ) (2025-02-27T11:29:43Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Algebraic and Statistical Properties of the Ordinary Least Squares Interpolator [3.4320157633663064]
我々は最小$ell$-norm OLS補間器について結果を提供する。
ガウス・マルコフの定理の拡張のような統計的結果を示す。
我々はOLS補間器の特性をさらに探求するシミュレーションを行う。
論文 参考訳(メタデータ) (2023-09-27T16:41:10Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
最近の研究は、自己教師付き学習とグラフラプラシアン作用素のトップ固有空間の近似との関係を構築している。
この研究は、増強に基づく事前訓練の統計的分析に発展する。
論文 参考訳(メタデータ) (2023-06-01T15:18:55Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
我々は、アダムがより現実的な条件下で、$O(epsilon-4)$勾配複雑性で$epsilon$-定常点に収束することを示している。
また、Adamの分散還元版を$O(epsilon-3)$の加速勾配複雑性で提案する。
論文 参考訳(メタデータ) (2023-04-27T06:27:37Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
政策勾配(PG)は、最も一般的な強化学習(RL)問題の1つである。
PG軌道の「バニラ」理論的理解は、RL問題を解く最も一般的な方法の1つである。
論文 参考訳(メタデータ) (2021-07-23T19:38:17Z) - Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric [0.0]
本研究では,実線上の確率分布のデータセットに関する統計解析を行うための,新規な予測手法を提案する。
特に主成分分析(PCA)と回帰に重点を置いています。
モデルのいくつかの理論的性質が研究され、一貫性が証明される。
論文 参考訳(メタデータ) (2021-01-22T10:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。