論文の概要: Quantum simulation of chemistry via quantum fast multipole method
- arxiv url: http://arxiv.org/abs/2510.07380v1
- Date: Wed, 08 Oct 2025 18:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.64292
- Title: Quantum simulation of chemistry via quantum fast multipole method
- Title(参考訳): 量子高速多重極法による化学の量子シミュレーション
- Authors: Dominic W. Berry, Kianna Wan, Andrew D. Baczewski, Elliot C. Eklund, Arkin Tikku, Ryan Babbush,
- Abstract要約: 量子コンピュータ上での量子化学をシミュレーションする手法について述べる。
このアプローチは、高階積公式を用いて伝播する分子ハミルトニアンの実空間第一量子化表現を用いる。
- 参考スコア(独自算出の注目度): 0.15664499958794106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we describe an approach for simulating quantum chemistry on quantum computers with significantly lower asymptotic complexity than prior work. The approach uses a real-space first-quantised representation of the molecular Hamiltonian which we propagate using high-order product formulae. Essential for this low complexity is the use of a technique similar to the fast multipole method for computing the Coulomb operator with $\widetilde{\cal O}(\eta)$ complexity for a simulation with $\eta$ particles. We show how to modify this algorithm so that it can be implemented on a quantum computer. We ultimately demonstrate an approach with $t(\eta^{4/3}N^{1/3} + \eta^{1/3} N^{2/3} ) (\eta Nt/\epsilon)^{o(1)}$ gate complexity, where $N$ is the number of grid points, $\epsilon$ is target precision, and $t$ is the duration of time evolution. This is roughly a speedup by ${\cal O}(\eta)$ over most prior algorithms. We provide lower complexity than all prior work for $N<\eta^6$ (the regime of practical interest), with only first-quantised interaction-picture simulations providing better performance for $N>\eta^6$. As with the classical fast multipole method, large numbers $\eta\gtrsim 10^3$ would be needed to realise this advantage.
- Abstract(参考訳): 本稿では, 量子コンピュータ上での量子化学をシミュレーションする手法について述べる。
このアプローチでは、高階積公式を用いて伝播する分子ハミルトニアンの実空間第一量子化表現を用いる。
この低い複雑性に欠かせないのは、クーロン作用素を$\widetilde{\cal O}(\eta)$複雑さで計算する高速多重極法に似た手法を使うことである。
我々は,このアルゴリズムを量子コンピュータ上で実装できるように修正する方法を示す。
最終的に、$t(\eta^{4/3}N^{1/3} + \eta^{1/3} N^{2/3} ) (\eta Nt/\epsilon)^{o(1)}$ gate complexity, where $N$ is the number of grid points, $\epsilon$ is target precision, $t$ is the duration of time evolution。
これは、ほとんど以前のアルゴリズムよりも${\cal O}(\eta)$のスピードアップである。
我々は,N<\eta^6$(実践的関心の体制)に対するすべての先行作業よりも複雑性が低く,N>\eta^6$に対してより優れた性能を提供するのは,最初の量子化相互作用-画像シミュレーションのみである。
古典的な高速多重極法と同様に、この利点を実現するためには大数$\eta\gtrsim 10^3$が必要である。
関連論文リスト
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
一般化されたボトルネック補題を用いて、これらのツールの量子一般化を示す。
この補題は、古典的なハミング距離に類似する距離の量子測度に焦点を当てるが、一意に量子原理に根ざしている。
ポアソン・ファインマン・カック法を用いて古典的な緩やかな混合結果を持ち上げる方法を示す。
論文 参考訳(メタデータ) (2024-11-06T22:51:27Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
量子コンピュータを用いた結合型古典的高調波発振器系の周波数応答関数の推定問題について検討する。
提案する量子アルゴリズムは,標準的な$sスパース,オーラクルベースのクエリアクセスモデルで動作する。
そこで,本アルゴリズムの簡単な適応により,時間内に無作為な結束木問題を解くことを示す。
論文 参考訳(メタデータ) (2024-05-14T15:28:37Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
低エネルギー部分空間内のハミルトン$H$の下で時間発展をシミュレートする作業を考える。
我々は,$O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$クエリを,任意の$Gamma$に対するブロックエンコーディングに使用する量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T17:58:01Z) - Do you know what q-means? [42.96240569413475]
古典的な$varepsilon$-$k$-meansアルゴリズムは、ロイドのアルゴリズムの1つの反復の近似バージョンを時間的複雑さで実行する。
また,時間的複雑さを考慮した$q$-means量子アルゴリズムも提案する。
論文 参考訳(メタデータ) (2023-08-18T17:52:12Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
我々は、我々の分割と形式主義の征服を通じて、大きな$Lambda$の量子化よりも優れたスケーリングと量子化を得られることを示す。
また,マルチコントロールされたXゲート群を実装する新しい方法を含む,ゲート最適化のための新しいアルゴリズムおよび回路レベル技術も提供する。
論文 参考訳(メタデータ) (2023-06-19T23:20:30Z) - Learning many-body Hamiltonians with Heisenberg-limited scaling [3.460138063155115]
N$-qubit 局所ハミルトニアンの相互作用を学習するためのハイゼンベルク限界を達成するアルゴリズムを提案する。
総進化時間$mathcalO(epsilon-1)$の後に、提案アルゴリズムは高い確率で$N$-qubit Hamiltonianのパラメータを$epsilon$-errorに効率的に推定することができる。
論文 参考訳(メタデータ) (2022-10-06T16:30:51Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
回路レベルの実装とリソース推定を行い、古典データの高密度な$Ntimes N$行列をブロックエンコードして$epsilon$を精度良くすることができる。
異なるアプローチ間のリソーストレードオフを調査し、量子ランダムアクセスメモリ(QRAM)の2つの異なるモデルの実装を検討する。
我々の結果は、単純なクエリの複雑さを超えて、大量の古典的データが量子アルゴリズムにアクセスできると仮定された場合のリソースコストの明確な図を提供する。
論文 参考訳(メタデータ) (2022-06-07T18:00:01Z) - Quantum simulation of real-space dynamics [7.143485463760098]
実空間力学のための量子アルゴリズムの体系的研究を行う。
我々は、量子化学のより高速な実空間シミュレーションを含む、いくつかの計算問題に応用する。
論文 参考訳(メタデータ) (2022-03-31T13:01:51Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
Amathbfx=mathbfb$という形の線形方程式の系を解く量子アルゴリズムを提案する。
このアルゴリズムは古典的手法に対して$N$に対して指数関数的に改善する。
論文 参考訳(メタデータ) (2020-09-09T18:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。