論文の概要: Residual-Informed Learning of Solutions to Algebraic Loops
- arxiv url: http://arxiv.org/abs/2510.09317v1
- Date: Fri, 10 Oct 2025 12:16:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:48.897106
- Title: Residual-Informed Learning of Solutions to Algebraic Loops
- Title(参考訳): 代数ループに対する解の残差インフォームド学習
- Authors: Felix Brandt, Andreas Heuermann, Philip Hannebohm, Bernhard Bachmann,
- Abstract要約: フィードフォワードニューラルネットワークは、損失関数における代数ループの残差(エラー)を用いて訓練される。
このトレーニング戦略は曖昧な解の問題も解決し、サロゲートが一貫した解に収束することを可能にする。
- 参考スコア(独自算出の注目度): 2.153071884007078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a residual-informed machine learning approach for replacing algebraic loops in equation-based Modelica models with neural network surrogates. A feedforward neural network is trained using the residual (error) of the algebraic loop directly in its loss function, eliminating the need for a supervised dataset. This training strategy also resolves the issue of ambiguous solutions, allowing the surrogate to converge to a consistent solution rather than averaging multiple valid ones. Applied to the large-scale IEEE 14-Bus system, our method achieves a 60% reduction in simulation time compared to conventional simulations, while maintaining the same level of accuracy through error control mechanisms.
- Abstract(参考訳): 本稿では,方程式ベースモデルにおける代数ループをニューラルネットワークサロゲートに置き換えるための残差インフォームド機械学習手法を提案する。
フィードフォワードニューラルネットワークは、損失関数の代数ループの残留(エラー)を直接使用してトレーニングされ、教師付きデータセットが不要になる。
このトレーニング戦略はまた、曖昧な解の問題を解決し、サロゲートが複数の有効な解を平均化するのではなく、一貫した解に収束できるようにする。
大規模なIEEE 14-Busシステムに適用し,従来のシミュレーションに比べてシミュレーション時間の60%削減を実現し,誤差制御機構を通じて同じレベルの精度を維持した。
関連論文リスト
- Heterogeneous Self-Supervised Acoustic Pre-Training with Local Constraints [64.15709757611369]
異種データを扱うための自己教師付き事前学習手法を提案する。
提案手法は、下流の教師付き微調整タスクに対する自己教師付き事前訓練モデルの適応性を大幅に向上させることができる。
論文 参考訳(メタデータ) (2025-08-27T15:48:50Z) - Loss-Free Machine Unlearning [51.34904967046097]
我々は、再学習とラベルなしの両方の機械学習アプローチを提案する。
Retraining-freeアプローチは、損失から派生したFisher情報を利用することが多く、利用できないラベル付きデータを必要とする。
本稿では,モデル出力のl2ノルムの勾配に対して,フィッシャー情報行列の対角線を近似感度に置き換えるSelective Synaptic Dampeningアルゴリズムの拡張を提案する。
論文 参考訳(メタデータ) (2024-02-29T16:15:34Z) - Adaptive operator learning for infinite-dimensional Bayesian inverse problems [7.716833952167609]
本研究では,局所的に精度の高いサロゲートを強制することによって,モデリングエラーを段階的に低減できる適応型演算子学習フレームワークを開発した。
UKIフレームワークを用いて線形の場合において厳密な収束を保証する。
その結果,逆精度を維持しながら計算コストを大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2023-10-27T01:50:33Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
本稿では,ニューラルネットワークに基づく記号回帰手法を提案する。
非常に小さなトレーニングデータセットとシステムに関する事前知識に基づいて、物理的に妥当なモデルを構築する。
本研究では,TurtleBot 2移動ロボット,磁気操作システム,2つの抵抗の等価抵抗,アンチロックブレーキシステムの長手力の4つの試験システムに対するアプローチを実験的に評価した。
論文 参考訳(メタデータ) (2023-02-01T22:05:04Z) - A Deep Gradient Correction Method for Iteratively Solving Linear Systems [5.744903762364991]
本稿では, 方程式の大, 疎, 対称, 正定値線形系の解を近似する新しい手法を提案する。
我々のアルゴリズムは、少数の反復で与えられた許容度に残留する線形系を減少させることができる。
論文 参考訳(メタデータ) (2022-05-22T06:40:38Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。