論文の概要: Evaluation and Implementation of Machine Learning Algorithms to Predict Early Detection of Kidney and Heart Disease in Diabetic Patients
- arxiv url: http://arxiv.org/abs/2510.14997v1
- Date: Sun, 12 Oct 2025 13:28:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.30646
- Title: Evaluation and Implementation of Machine Learning Algorithms to Predict Early Detection of Kidney and Heart Disease in Diabetic Patients
- Title(参考訳): 糖尿病患者における腎・心疾患早期発見のための機械学習アルゴリズムの評価と実装
- Authors: Syed Ibad Hasnain,
- Abstract要約: 本研究は,糖尿病患者のCKDおよびCVDの早期診断を改善するため,従来の統計手法と機械学習手法を統合した。
A群はCKD群とCVD群,B群はCKD群,C群はCVD群,D群はCVD群であった。
血清クレアチニン,高血圧はCKD,コレステロール,トリグリセリド,心筋梗塞,ストローク,高血圧はCVDと有意な相関を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiovascular disease and chronic kidney disease are major complications of diabetes, leading to high morbidity and mortality. Early detection of these conditions is critical, yet traditional diagnostic markers often lack sensitivity in the initial stages. This study integrates conventional statistical methods with machine learning approaches to improve early diagnosis of CKD and CVD in diabetic patients. Descriptive and inferential statistics were computed in SPSS to explore associations between diseases and clinical or demographic factors. Patients were categorized into four groups: Group A both CKD and CVD, Group B CKD only, Group C CVD only, and Group D no disease. Statistical analysis revealed significant correlations: Serum Creatinine and Hypertension with CKD, and Cholesterol, Triglycerides, Myocardial Infarction, Stroke, and Hypertension with CVD. These results guided the selection of predictive features for machine learning models. Logistic Regression, Support Vector Machine, and Random Forest algorithms were implemented, with Random Forest showing the highest accuracy, particularly for CKD prediction. Ensemble models outperformed single classifiers in identifying high-risk diabetic patients. SPSS results further validated the significance of the key parameters integrated into the models. While challenges such as interpretability and class imbalance remain, this hybrid statistical machine learning framework offers a promising advancement toward early detection and risk stratification of diabetic complications compared to conventional diagnostic approaches.
- Abstract(参考訳): 心臓血管疾患と慢性腎臓病は糖尿病の大きな合併症であり、高い死亡率と死亡率をもたらす。
これらの状態の早期検出は重要であるが、従来の診断マーカーは初期段階では感度を欠くことが多い。
本研究は,糖尿病患者のCKDおよびCVDの早期診断を改善するため,従来の統計手法と機械学習手法を統合した。
記述的および推論的統計はSPSSで計算され、疾患と臨床または人口統計学的要因の関連を探究した。
A群はCKD群とCVD群,B群はCKD群,C群はCVD群,D群はCVD群であった。
血清クレアチニン,高血圧はCKD,コレステロール,トリグリセリド,心筋梗塞,ストローク,高血圧はCVDと有意な相関を示した。
これらの結果は、機械学習モデルの予測機能の選択を導いた。
ロジスティック回帰、サポートベクトルマシン、ランダムフォレストアルゴリズムが実装され、特にCKD予測において、ランダムフォレストが最も精度が高い。
エンサンブルモデルは高リスク糖尿病患者の識別において単一分類器よりも優れていた。
SPSSの結果は、モデルに組み込まれたキーパラメータの重要性をさらに検証した。
解釈可能性やクラス不均衡といった課題は依然として残っているが、このハイブリッド統計機械学習フレームワークは、従来の診断手法と比較して、糖尿病合併症の早期発見とリスク階層化に向けた有望な進歩を提供する。
関連論文リスト
- Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
集中治療室(ICUs)の高血圧性腎疾患(HKD)患者は短期的死亡率が高い。
我々は,HKDのICU患者に対して,30日間の院内死亡を予測できる機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2025-07-25T00:48:23Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVDは、英国バイオバンクから50万人以上の参加者を対象に、大規模な言語モデルに基づいて構築された適応可能なCVDリスク予測フレームワークである。
包括的かつ可変的な患者情報を柔軟に取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して新規患者の集団に迅速に適応する。
論文 参考訳(メタデータ) (2025-05-30T14:42:02Z) - Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification [0.0]
慢性腎疾患(CKD)は公衆衛生上の重要な課題であり、早期に発見・管理されていない場合、しばしばエンドステージ腎疾患(ESRD)へと進行する。
本稿では,機械学習技術と古典統計モデルを組み合わせて,CKDの進行をモデル化する手法を提案する。
論文 参考訳(メタデータ) (2024-11-16T09:22:06Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
心臓血管疾患(CVD)は、現在世界でも主要な死因であり、早期診断と治療の要点を浮き彫りにしている。
機械学習(ML)手法はCVDの早期診断に役立つが、その性能は高品質なデータへのアクセスに依存している。
本稿では、FedCVDという心臓血管疾患検出のための、世界初の実世界のFLベンチマークを示す。
論文 参考訳(メタデータ) (2024-10-28T02:24:01Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission [0.0]
本研究はDiabetes 130-US Hospitalsデータセットを用いて,各種機械学習モデルによる寛解患者の分析と予測を行う。
LightGBMは、XGBoostが首位だったのに対して、従来のモデルとしてはベストだった。
本研究は,予測医療モデリングにおいて,モデル選択,検証,解釈可能性が重要なステップであることを示す。
論文 参考訳(メタデータ) (2024-06-28T15:06:22Z) - Multi-level Phenotypic Models of Cardiovascular Disease and Obstructive Sleep Apnea Comorbidities: A Longitudinal Wisconsin Sleep Cohort Study [5.129044301709751]
閉塞性睡眠時無呼吸症候群(OSA)患者における心血管疾患(CVD)の意義
従来のモデルでは、OSA患者のCVD軌跡を正確に予測するために必要な動的および縦方向のスコープが欠如している。
本研究では,ウィスコンシン・スリープ・コーホートのデータを利用して,これらの状態の進行と相互作用を時間とともに解析する,新しい多段階表現型モデルを提案する。
論文 参考訳(メタデータ) (2024-06-19T04:50:16Z) - AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.2399911126932527]
慢性腎臓病(英: chronic Kidney Disease、CKD)は、腎臓の構造と機能に大きな影響を及ぼし、最終的に腎不全を引き起こす異種性疾患である。
本研究の目的は、アンサンブル学習と説明可能なAIを用いて、早期予後とCKDの検出のための支配的特徴、特徴スコア、および値の可視化である。
論文 参考訳(メタデータ) (2024-06-10T18:46:14Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
近似計算を用いて生物学的に有意なパラメータを推定するための血小板沈着モデルと推論手法を提案する。
この研究は、CVDの検出と治療のためのパーソナライズされた病理検査の先例のない機会を開く。
論文 参考訳(メタデータ) (2020-10-13T15:20:21Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。