論文の概要: Batch Distillation Data for Developing Machine Learning Anomaly Detection Methods
- arxiv url: http://arxiv.org/abs/2510.18075v1
- Date: Mon, 20 Oct 2025 20:13:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:12.552257
- Title: Batch Distillation Data for Developing Machine Learning Anomaly Detection Methods
- Title(参考訳): 機械学習異常検出手法の開発のためのバッチ蒸留データ
- Authors: Justus Arweiler, Indra Jungjohann, Aparna Muraleedharan, Heike Leitte, Jakob Burger, Kerstin Münnemann, Fabian Jirasek, Hans Hasse,
- Abstract要約: 機械学習は化学プロセスにおける異常検出(AD)を前進させる大きな可能性を秘めている。
MLベースの手法の開発は、公開実験データの欠如によって妨げられている。
このデータベースは、高度なMLベースのADメソッドを開発するための道を開く。
- 参考スコア(独自算出の注目度): 2.107969466194361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) holds great potential to advance anomaly detection (AD) in chemical processes. However, the development of ML-based methods is hindered by the lack of openly available experimental data. To address this gap, we have set up a laboratory-scale batch distillation plant and operated it to generate an extensive experimental database, covering fault-free experiments and experiments in which anomalies were intentionally induced, for training advanced ML-based AD methods. In total, 119 experiments were conducted across a wide range of operating conditions and mixtures. Most experiments containing anomalies were paired with a corresponding fault-free one. The database that we provide here includes time-series data from numerous sensors and actuators, along with estimates of measurement uncertainty. In addition, unconventional data sources -- such as concentration profiles obtained via online benchtop NMR spectroscopy and video and audio recordings -- are provided. Extensive metadata and expert annotations of all experiments are included. The anomaly annotations are based on an ontology developed in this work. The data are organized in a structured database and made freely available via doi.org/10.5281/zenodo.17395544. This new database paves the way for the development of advanced ML-based AD methods. As it includes information on the causes of anomalies, it further enables the development of interpretable and explainable ML approaches, as well as methods for anomaly mitigation.
- Abstract(参考訳): 機械学習(ML)は化学プロセスにおける異常検出(AD)の進歩に大きな可能性を秘めている。
しかし、MLベースの手法の開発は、公開実験データの欠如によって妨げられている。
このギャップに対処するため,実験室規模のバッチ蒸留プラントを設置し,広範囲な実験データベースを作成した。
合計で119の試験が、幅広い操作条件と混合物で実施された。
異常を含むほとんどの実験は、対応する故障のない実験と組み合わせられた。
ここで提供されるデータベースには、多数のセンサーやアクチュエーターからの時系列データと、測定の不確実性の推定が含まれている。
また、オンラインのベンチトップNMR分光法やビデオ・オーディオ記録を通じて得られる濃度プロファイルなど、従来と異なるデータソースも提供される。
すべての実験の広範なメタデータと専門家アノテーションが含まれている。
異常アノテーションは、この研究で開発されたオントロジーに基づいている。
データは構造化されたデータベースに整理され、doi.org/10.5281/zenodo.17395544を介して自由に利用できる。
このデータベースは、高度なMLベースのADメソッドを開発するための道を開く。
異常の原因に関する情報を含むため、解釈可能で説明可能なMLアプローチや、異常の緩和方法の開発も可能となる。
関連論文リスト
- Deep evolving semi-supervised anomaly detection [14.027613461156864]
本研究の目的は,連続的半教師付き異常検出(CSAD)のタスクを形式化することである。
本稿では,半教師付きデータを扱うための変分オートエンコーダ(VAE)のベースラインモデルを提案する。
論文 参考訳(メタデータ) (2024-12-01T15:48:37Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation [57.6797306341115]
我々は,サンプル難易度の観点から,マッチングに基づくDD手法の理解に向けて最初の一歩を踏み出した。
次に、データプルーニングのニューラルネットワークスケーリング法則をDDに拡張し、これらのマッチングベースの手法を理論的に説明する。
SDC(Sampple Difficulty Correction)アプローチを導入し、より簡単なサンプルを生成して、より高いデータセット品質を実現する。
論文 参考訳(メタデータ) (2024-08-22T15:20:32Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation [37.72735288760648]
本稿では,学習可能なデータ拡張に基づく時系列異常検出(LATAD)手法を提案する。
LATADは、比較学習を通じて時系列データから識別的特徴を抽出する。
その結果、LATADは最先端の異常検出評価に匹敵する、あるいは改善された性能を示した。
論文 参考訳(メタデータ) (2024-06-18T04:25:56Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
機械学習は、大規模または高速に生成されたデータセットを含む研究を強化するために使用できる。
本研究では,X線反射法(XRR)のための閉ループワークフローへのMLの導入について述べる。
本研究では,ビームライン制御ソフトウェア環境に付加的なソフトウェア依存関係を導入することなく,実験中の基本データ解析をリアルタイムで行うソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-20T21:21:19Z) - SensorSCAN: Self-Supervised Learning and Deep Clustering for Fault
Diagnosis in Chemical Processes [2.398451252047814]
本研究では,教師なし故障検出・診断のための新しい手法であるSensorSCANを提案する。
我々は、テネシー・イーストマン・プロセスの2つの公開データセットに、さまざまな欠点のあるモデルの性能を実演する。
本手法は,故障の数が事前に分かっていない実世界のアプリケーションに適している。
論文 参考訳(メタデータ) (2022-08-17T10:24:37Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
超低温原子からの実験データに教師なし機械学習技術を適用する。
我々は、完全にバイアスのない方法で、ハルダンモデルの位相位相図を得る。
我々の研究は、複雑な多体系における新しいエキゾチック位相の教師なし検出のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2021-01-14T16:38:21Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
データ異常は、実世界のデータセットでユビキタスであり、機械学習(ML)システムに悪影響を及ぼす可能性がある。
本稿では,新しいモデルに基づく異常検出手法を提案し,その手法をアウト・オブ・バグ検出と呼ぶ。
本手法は,家庭評価のケーススタディを通じて,データ前処理のステップとして,MLシステムの精度と信頼性を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-09-20T06:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。