論文の概要: A Geometric Approach to Steerable Convolutions
- arxiv url: http://arxiv.org/abs/2510.18813v2
- Date: Fri, 24 Oct 2025 17:42:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 09:00:15.22525
- Title: A Geometric Approach to Steerable Convolutions
- Title(参考訳): ステアブル・コンボリューションへの幾何学的アプローチ
- Authors: Soumyabrata Kundu, Risi Kondor,
- Abstract要約: この研究は、$d$次元のステアブル畳み込みニューラルネットワークの新しい、より直感的な導出を提供する。
我々はクレブシュ-ゴルダン分解と球面調和基底関数の出現について直観的に説明する。
- 参考スコア(独自算出の注目度): 5.257591631753942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contrast to the somewhat abstract, group theoretical approach adopted by many papers, our work provides a new and more intuitive derivation of steerable convolutional neural networks in $d$ dimensions. This derivation is based on geometric arguments and fundamental principles of pattern matching. We offer an intuitive explanation for the appearance of the Clebsch--Gordan decomposition and spherical harmonic basis functions. Furthermore, we suggest a novel way to construct steerable convolution layers using interpolation kernels that improve upon existing implementation, and offer greater robustness to noisy data.
- Abstract(参考訳): 多くの論文で採用されているやや抽象的なグループ理論的アプローチとは対照的に、我々の研究は、$d$次元のステアブル畳み込みニューラルネットワークの新しい直感的な導出を提供する。
この導出は幾何学的議論とパターンマッチングの基本原理に基づいている。
我々はクレブシュ-ゴルダン分解と球面調和基底関数の出現について直観的に説明する。
さらに,既存の実装を改善する補間カーネルを用いてステアブルな畳み込み層を構築する手法を提案する。
関連論文リスト
- Sparse Bayesian Generative Modeling for Compressive Sensing [8.666730973498625]
この研究は、圧縮センシング(CS)における基本的な線形逆問題に、新しいタイプの正規化生成先行を導入することで対処する。
提案手法は変分推論の概念を用いて理論的に支援し,異なる種類の圧縮可能な信号を用いて実験的に検証する。
論文 参考訳(メタデータ) (2024-11-14T14:37:47Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Information Topology [6.0044467881527614]
本稿では,情報理論と代数的トポロジーを統合するフレームワークであるEmphInformation Topologyを紹介する。
スタートポイントは、順不変で予測的構造(サイクル)から点的に、順序に敏感な揺らぎ(ドット)を分離するエンファンドットサイクル二分法である。
次に,Shannonキャパシティのトポロジ的双対であるエンフォロジーキャパシティを,システムによって支えられる独立した情報サイクルの数として定義する。
論文 参考訳(メタデータ) (2022-10-07T23:54:30Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Fully Steerable 3D Spherical Neurons [14.86655504533083]
本稿では,球面決定曲面からなり,点雲上で動作可能なフィードフォワード学習方式を提案する。
我々の理論の固有の幾何学的3次元構造のため、我々はその原子部分に対して3次元の操舵性制約を導出する。
モデルパラメータが推論時にどのように完全に制御可能であるかを示す。
論文 参考訳(メタデータ) (2021-06-02T16:30:02Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。