論文の概要: Revisiting Orbital Minimization Method for Neural Operator Decomposition
- arxiv url: http://arxiv.org/abs/2510.21952v1
- Date: Fri, 24 Oct 2025 18:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:14.709422
- Title: Revisiting Orbital Minimization Method for Neural Operator Decomposition
- Title(参考訳): ニューラル演算子分解における軌道最小化法の再検討
- Authors: J. Jon Ryu, Samuel Zhou, Gregory W. Wornell,
- Abstract要約: 計算化学における固有値問題の解法として1990年代に提案されたインフォロビタル法(英語版)(OMM)と呼ばれる古典的最適化フレームワークを再考する。
我々は、ニューラルネットワークをトレーニングして正の半定値演算子を分解し、その実用的な利点を様々なベンチマークタスクで示すために、このフレームワークを適用した。
- 参考スコア(独自算出の注目度): 19.86950069790711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral decomposition of linear operators plays a central role in many areas of machine learning and scientific computing. Recent work has explored training neural networks to approximate eigenfunctions of such operators, enabling scalable approaches to representation learning, dynamical systems, and partial differential equations (PDEs). In this paper, we revisit a classical optimization framework from the computational physics literature known as the \emph{orbital minimization method} (OMM), originally proposed in the 1990s for solving eigenvalue problems in computational chemistry. We provide a simple linear-algebraic proof of the consistency of the OMM objective, and reveal connections between this method and several ideas that have appeared independently across different domains. Our primary goal is to justify its broader applicability in modern learning pipelines. We adapt this framework to train neural networks to decompose positive semidefinite operators, and demonstrate its practical advantages across a range of benchmark tasks. Our results highlight how revisiting classical numerical methods through the lens of modern theory and computation can provide not only a principled approach for deploying neural networks in numerical simulation, but also effective and scalable tools for machine learning.
- Abstract(参考訳): 線形作用素のスペクトル分解は、機械学習と科学計算の多くの領域において中心的な役割を果たす。
最近の研究は、そのような演算子の固有関数を近似するためにニューラルネットワークを訓練し、表現学習、力学系、偏微分方程式(PDE)へのスケーラブルなアプローチを可能にしている。
本稿では,1990年代に提唱された計算化学における固有値問題の解法である「emph{orbital minimization method} (OMM)」という計算物理学文献から,古典的な最適化フレームワークを再検討する。
我々は,OMM目標の整合性を示す単純な線形代数的証明を提供し,この手法と異なる領域にまたがって独立して現れるいくつかのアイデアの関連を明らかにする。
私たちの一番の目標は、現代の学習パイプラインにおける幅広い適用性を正当化することです。
我々は、ニューラルネットワークをトレーニングして正の半定値演算子を分解し、その実用的な利点を様々なベンチマークタスクで示すために、このフレームワークを適用した。
この結果から,現代の理論と計算のレンズを通した古典的数値手法の再検討が,ニューラルネットワークを数値シミュレーションに展開するための原則的アプローチを提供するだけでなく,機械学習のための効果的でスケーラブルなツールを提供することができた。
関連論文リスト
- An Evolutionary Multi-objective Optimization for Replica-Exchange-based Physics-informed Operator Learning Network [7.1950116347185995]
本稿では,レプリカに基づく物理インフォームド演算子学習ネットワークのための進化的多目的最適化を提案する。
我々のフレームワークは、精度、ノイズ、不確実性を定量化する能力において、一般的な演算子学習方法よりも一貫して優れています。
論文 参考訳(メタデータ) (2025-08-31T02:17:59Z) - Efficient Parametric SVD of Koopman Operator for Stochastic Dynamical Systems [51.54065545849027]
クープマン作用素は非線形力学系を解析するための原理的なフレームワークを提供する。
VAMPnet と DPNet はクープマン作用素の主特異部分空間を学ぶために提案されている。
我々は、クープマン作用素のトップ$kの特異関数を学ぶためのスケーラブルで概念的にシンプルな方法を提案する。
論文 参考訳(メタデータ) (2025-07-09T18:55:48Z) - Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning [78.88684753303794]
ディープラーニングは主にコンピュータビジョンと自然言語処理の応用を通じて進歩してきた。
ニューラル演算子は、関数空間間のマッピングにニューラルネットワークを一般化する原則的な方法である。
本稿では、無限次元関数空間間の写像の実践的な実装を構築するための鍵となる原理を同定し、蒸留する。
論文 参考訳(メタデータ) (2025-06-12T17:59:31Z) - From Theory to Application: A Practical Introduction to Neural Operators in Scientific Computing [0.0]
この研究は、Deep Operator Networks (DeepONet) や主成分分析に基づくニューラルネットワーク (PCANet) などの基礎モデルをカバーする。
レビューでは、ベイズ推論問題の代理として神経オペレーターを適用し、精度を維持しながら後部推論を加速させる効果を示した。
残差ベースのエラー修正やマルチレベルトレーニングなど、これらの問題に対処する新たな戦略を概説する。
論文 参考訳(メタデータ) (2025-03-07T17:25:25Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Approximating Numerical Fluxes Using Fourier Neural Operators for Hyperbolic Conservation Laws [7.438389089520601]
物理インフォームドニューラルネットワーク(PINN)やニューラル演算子などのニューラルネットワークベースの手法は、堅牢性と一般化の欠陥を示す。
本研究では,従来の数値フラックスをニューラル演算子に置き換えることによる双曲的保存則に着目した。
提案手法は従来の数値スキームとFNOの長所を組み合わせたもので,いくつかの点で標準FNO法よりも優れている。
論文 参考訳(メタデータ) (2024-01-03T15:16:25Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
レイヤワイドフィードバックフィードバック(LFP)は、ニューラルネットワークのような予測器のための新しいトレーニング原則である。
LFPはそれぞれの貢献に基づいて個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分と有害な部分の弱体化を両立させる手法である。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Deep Efficient Continuous Manifold Learning for Time Series Modeling [11.876985348588477]
対称正定値行列はコンピュータビジョン、信号処理、医療画像解析において研究されている。
本稿では,リーマン多様体とコレスキー空間の間の微分同相写像を利用する枠組みを提案する。
時系列データの動的モデリングのために,多様体常微分方程式とゲートリカレントニューラルネットワークを体系的に統合した連続多様体学習法を提案する。
論文 参考訳(メタデータ) (2021-12-03T01:38:38Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。