論文の概要: Efficiency Without Cognitive Change: Evidence from Human Interaction with Narrow AI Systems
- arxiv url: http://arxiv.org/abs/2510.24893v1
- Date: Tue, 28 Oct 2025 18:55:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:44.697808
- Title: Efficiency Without Cognitive Change: Evidence from Human Interaction with Narrow AI Systems
- Title(参考訳): 認知的変化のない効率性:人間と狭いAIシステムとの相互作用の証拠
- Authors: María Angélica Benítez, Rocío Candela Ceballos, Karina Del Valle Molina, Sofía Mundo Araujo, Sofía Evangelina Victorio Villaroel, Nadia Justel,
- Abstract要約: 狭義のAIツールへの短期的な露出は、コア認知能力を高める。
問題解決や言語理解の標準化には、ポスト前の大きな違いは現れなかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing integration of artificial intelligence (AI) into human cognition raises a fundamental question: does AI merely improve efficiency, or does it alter how we think? This study experimentally tested whether short-term exposure to narrow AI tools enhances core cognitive abilities or simply optimizes task performance. Thirty young adults completed standardized neuropsychological assessments embedded in a seven-week protocol with a four-week online intervention involving problem-solving and verbal comprehension tasks, either with or without AI support (ChatGPT). While AI-assisted participants completed several tasks faster and more accurately, no significant pre-post differences emerged in standardized measures of problem solving or verbal comprehension. These results demonstrate efficiency gains without cognitive change, suggesting that current narrow AI systems serve as cognitive scaffolds extending performance without transforming underlying mental capacities. The findings highlight the need for ethical and educational frameworks that promote critical and autonomous thinking in an increasingly AI-augmented cognitive ecology.
- Abstract(参考訳): 人工知能(AI)の人間の認識への統合は、AIが単に効率を改善するだけなのか、それとも私たちの考え方を変えるのだろうか、という根本的な疑問を提起する。
本研究では、狭義のAIツールへの短期的露出がコア認知能力を高めるか、単にタスクパフォーマンスを最適化するかを実験的に検証した。
30人の若者が7週間のプロトコルに埋め込まれた標準化された神経心理学的評価を完了し、4週間のオンライン介入で問題解決と言語理解のタスクをAIサポートの有無にかかわらず実施した(ChatGPT)。
AI支援の参加者は、複数のタスクを迅速かつ正確に完了させたが、問題解決の標準化や言語理解において、ポスト前の大きな違いは現れなかった。
これらの結果は、認知的変化なしに効率が向上することを示し、現在の狭いAIシステムは、基礎となる精神能力を変えることなく、パフォーマンスを伸ばす認知的足場として機能することを示唆している。
この発見は、AIが強化される認知生態学において、批判的かつ自律的な思考を促進する倫理的および教育的なフレームワークの必要性を強調している。
関連論文リスト
- Bridging Minds and Machines: Toward an Integration of AI and Cognitive Science [48.38628297686686]
認知科学は人工知能(AI)、哲学、心理学、神経科学、言語学、文化などの分野を深く形成している。
AIの多くのブレークスルーは、そのルーツを認知理論にさかのぼる一方で、AI自体が認知研究を進めるのに欠かせないツールになっている。
我々は、認知科学におけるAIの未来は、性能の向上だけでなく、人間の心の理解を深めるシステムの構築にも関係していると主張している。
論文 参考訳(メタデータ) (2025-08-28T11:26:17Z) - Do Students Rely on AI? Analysis of Student-ChatGPT Conversations from a Field Study [10.71612026319996]
本研究は,各種STEMコースにおける簡単なクイズベースシナリオにおける315人の学生とAIの会話を分析した。
学生は全体としてAIへの依存度が低く、多くの学生は学習にAIを効果的に利用できなかった。
特定の行動メトリクスは、AIへの依存を強く予測し、AIの採用を説明する潜在的な行動メカニズムを強調します。
論文 参考訳(メタデータ) (2025-08-27T20:00:27Z) - AI Literacy as a Key Driver of User Experience in AI-Powered Assessment: Insights from Socratic Mind [2.0272430076690027]
本研究では,学生のAIリテラシーと,それ以前のAI技術への露出が,ソクラティックマインドに対する認識をいかに形作るかを検討する。
コンピュータサイエンス・ビジネスコースの309人の学部生のデータを収集した。
論文 参考訳(メタデータ) (2025-07-29T10:11:24Z) - ChatGPT produces more "lazy" thinkers: Evidence of cognitive engagement decline [0.0]
本研究では,生成型人工知能(AI)ツールが学術書記作業における学生の認知活動に与える影響について検討した。
その結果,ChatGPT群ではコントロール群に比べて認知エンゲージメントスコアが有意に低かった。
これらの結果は、AI支援が認知的オフロードにつながる可能性があることを示唆している。
論文 参考訳(メタデータ) (2025-06-30T18:41:50Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - How Performance Pressure Influences AI-Assisted Decision Making [52.997197698288936]
我々は、プレッシャーと説明可能なAI(XAI)技術がAIアドバイステイク行動とどのように相互作用するかを示す。
我々の結果は、圧力とXAIの異なる組み合わせで複雑な相互作用効果を示し、AIアドバイスの行動を改善するか、悪化させるかのどちらかを示す。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
我々は、周囲の信号を入力として取り、それを処理して環境を理解する、知覚の認知機能に焦点を当てる。
我々は、認知科学にインスパイアされたAIシステムを構築するために、AIに一連の方法を提案する。
論文 参考訳(メタデータ) (2023-10-13T01:21:55Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making [4.877174544937129]
AIによる意思決定支援ツールによってサポートされる人々は、しばしばAIに過度に依存します。
AIの決定に説明を加えることは、過度な信頼を減らすものではありません。
我々の研究は、人間の認知モチベーションが説明可能なAIソリューションの有効性を損なうことを示唆している。
論文 参考訳(メタデータ) (2021-02-19T00:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。