論文の概要: ChatGPT produces more "lazy" thinkers: Evidence of cognitive engagement decline
- arxiv url: http://arxiv.org/abs/2507.00181v1
- Date: Mon, 30 Jun 2025 18:41:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:58.628336
- Title: ChatGPT produces more "lazy" thinkers: Evidence of cognitive engagement decline
- Title(参考訳): ChatGPTはより「怠慢」な思考者を生み出す:認知的エンゲージメント低下の証拠
- Authors: Georgios P. Georgiou,
- Abstract要約: 本研究では,生成型人工知能(AI)ツールが学術書記作業における学生の認知活動に与える影響について検討した。
その結果,ChatGPT群ではコントロール群に比べて認知エンゲージメントスコアが有意に低かった。
これらの結果は、AI支援が認知的オフロードにつながる可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the increasing use of large language models (LLMs) in education, concerns have emerged about their potential to reduce deep thinking and active learning. This study investigates the impact of generative artificial intelligence (AI) tools, specifically ChatGPT, on the cognitive engagement of students during academic writing tasks. The study employed an experimental design with participants randomly assigned to either an AI-assisted (ChatGPT) or a non-assisted (control) condition. Participants completed a structured argumentative writing task followed by a cognitive engagement scale (CES), the CES-AI, developed to assess mental effort, attention, deep processing, and strategic thinking. The results revealed significantly lower cognitive engagement scores in the ChatGPT group compared to the control group. These findings suggest that AI assistance may lead to cognitive offloading. The study contributes to the growing body of literature on the psychological implications of AI in education and raises important questions about the integration of such tools into academic practice. It calls for pedagogical strategies that promote active, reflective engagement with AI-generated content to avoid compromising self-regulated learning and deep cognitive involvement of students.
- Abstract(参考訳): 教育における大規模言語モデル(LLM)の利用の増加にもかかわらず、深い思考と活発な学習を減らす可能性を懸念する声が上がっている。
本研究では,生成型人工知能(AI)ツール,特にChatGPTが学術書記作業における学生の認知的関与に与える影響について検討した。
この研究は、AIアシスト(ChatGPT)または非アシスト(制御)条件のいずれかにランダムに割り当てられた参加者による実験設計を採用した。
参加者は、精神的な努力、注意、深い処理、戦略的思考を評価するために開発された認知エンゲージメント尺度(CES)に続き、構造化された議論的執筆作業を完成させた。
その結果,ChatGPT群ではコントロール群に比べて認知エンゲージメントスコアが有意に低かった。
これらの結果は、AI支援が認知的オフロードにつながる可能性があることを示唆している。
この研究は、教育におけるAIの心理的含意に関する文献の成長に寄与し、そのようなツールの学術的実践への統合に関する重要な疑問を提起する。
学生の自己統制的学習や深い認知的関与を避けるため、AI生成コンテンツとの活発で反射的な関わりを促進する教育戦略が求められている。
関連論文リスト
- Distinguishing Fact from Fiction: Student Traits, Attitudes, and AI Hallucination Detection in Business School Assessment [2.3359837623080613]
本研究では,英国ビジネススクールにおいて,学術的スキル,認知的特徴,AI懐疑主義が,事実的不正確なAI生成反応(幻覚)を検出する能力にどのように影響するかを検討する。
幻覚の同定に成功したのは20%に過ぎず、強力な学業成績、解釈スキル思考、習熟度、AI懐疑主義が重要な予測因子として現れている。
論文 参考訳(メタデータ) (2025-05-28T18:39:57Z) - Beyond Detection: Designing AI-Resilient Assessments with Automated Feedback Tool to Foster Critical Thinking [0.0]
本研究は, 検出ではなく, 評価設計に基づく能動的AIレジリエントソリューションを提案する。
WebベースのPythonツールで、Bloomの分類と高度な自然言語処理技術を統合する。
これは、タスクがリコールや要約のような下位の思考や、分析、評価、作成といった上位のスキルを目標にしているかどうかを教育者が判断するのに役立つ。
論文 参考訳(メタデータ) (2025-03-30T23:13:00Z) - AI in Education: Rationale, Principles, and Instructional Implications [0.0]
ChatGPTのような生成AIは、人間のようなコンテンツを作り、その教育的役割について疑問を呈する。
この研究は、AIが真の認知的努力を補うのではなく、確実に補完する意図的な戦略を強調している。
論文 参考訳(メタデータ) (2024-12-02T14:08:07Z) - Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
論文 参考訳(メタデータ) (2024-11-15T13:22:04Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
我々は、プレッシャーと説明可能なAI(XAI)技術がAIアドバイステイク行動とどのように相互作用するかを示す。
我々の結果は、圧力とXAIの異なる組み合わせで複雑な相互作用効果を示し、AIアドバイスの行動を改善するか、悪化させるかのどちらかを示す。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
この研究はAIの振る舞いを包括的に調査し、多様な設定がチャーパーの反応に与える影響を分析している。
一連の認知テストを通じて、この研究はチャーパーズの自己認識とパターン認識の能力を評価する。
この研究の興味深い側面は、チャーパーのハンドルやパーソナリティのタイプがパフォーマンスに与える影響を探ることである。
論文 参考訳(メタデータ) (2023-08-30T15:40:18Z) - Learning to Prompt in the Classroom to Understand AI Limits: A pilot
study [35.06607166918901]
大規模言語モデル(LLM)と、ChatGPTのような派生したチャットボットは、AIシステムの自然言語処理能力を大幅に改善した。
しかし、AI手法が顕著な貢献を示しているにもかかわらず、興奮は否定的な感情を引き起こしている。
パイロット教育は21人の生徒を抱えた高校で実施された。
論文 参考訳(メタデータ) (2023-07-04T07:51:37Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
本稿では,Large Language Models(LLM)の教育における転換的役割とその学習ツールとしての可能性について考察する。
AI-tutor、AI-coach、AI-mentor、AI-teammate、AI-tool、AI-simulator、AI-studentの7つのアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-13T03:36:36Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。