論文の概要: Reinforcement Learning for Pollution Detection in a Randomized, Sparse and Nonstationary Environment with an Autonomous Underwater Vehicle
- arxiv url: http://arxiv.org/abs/2510.26347v1
- Date: Thu, 30 Oct 2025 10:55:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.766124
- Title: Reinforcement Learning for Pollution Detection in a Randomized, Sparse and Nonstationary Environment with an Autonomous Underwater Vehicle
- Title(参考訳): 自律型水中車両によるランダム・スパース・非定常環境における汚染検知のための強化学習
- Authors: Sebastian Zieglmeier, Niklas Erdmann, Narada D. Warakagoda,
- Abstract要約: 強化学習アルゴリズムは、報酬を最大化する学習行動によって問題解決を最適化するように設計されている。
高度なRLアルゴリズムでさえ、ランダム環境や非定常環境での問題を解く能力に制限されることが多い。
本稿では,スパース,ランダム化,非定常環境で効率的に動作するための古典的RL手法を再検討し,修正する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) algorithms are designed to optimize problem-solving by learning actions that maximize rewards, a task that becomes particularly challenging in random and nonstationary environments. Even advanced RL algorithms are often limited in their ability to solve problems in these conditions. In applications such as searching for underwater pollution clouds with autonomous underwater vehicles (AUVs), RL algorithms must navigate reward-sparse environments, where actions frequently result in a zero reward. This paper aims to address these challenges by revisiting and modifying classical RL approaches to efficiently operate in sparse, randomized, and nonstationary environments. We systematically study a large number of modifications, including hierarchical algorithm changes, multigoal learning, and the integration of a location memory as an external output filter to prevent state revisits. Our results demonstrate that a modified Monte Carlo-based approach significantly outperforms traditional Q-learning and two exhaustive search patterns, illustrating its potential in adapting RL to complex environments. These findings suggest that reinforcement learning approaches can be effectively adapted for use in random, nonstationary, and reward-sparse environments.
- Abstract(参考訳): 強化学習(Reinforcement Learning、RL)アルゴリズムは、報酬を最大化する学習行動による問題解決を最適化するために設計されている。
高度なRLアルゴリズムでさえ、これらの条件下での問題を解く能力に制限されることが多い。
自律型水中車両(AUV)による水中汚染雲の探索のようなアプリケーションでは、RLアルゴリズムは報酬の少ない環境をナビゲートする必要がある。
本稿では,従来のRLアプローチを再検討し,スパース,ランダム化,非定常環境で効率的に動作させることによって,これらの課題に対処することを目的とする。
本稿では,階層型アルゴリズムの変更,マルチゴール学習,外部出力フィルタとしての位置メモリの統合など,多数の変更を体系的に検討し,状態修正を防止する。
その結果,モンテカルロをベースとした改良型アプローチは,従来のQ-ラーニングと2つの網羅的な探索パターンを著しく上回り,RLを複雑な環境に適応させる可能性を示している。
これらの結果から,無作為,非定常,報酬分散環境において,強化学習アプローチを効果的に適用できることが示唆された。
関連論文リスト
- Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) は有望な制御フレームワークとして登場した。
現在のDRLアルゴリズムは、ほぼ最適ポリシーを見つけるために不均等な計算資源を必要とする。
本稿では,海洋制御システムにおける提案手法の総合的な探索について述べる。
論文 参考訳(メタデータ) (2024-03-31T09:25:28Z) - Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning [8.471466670802815]
本稿では,多目的・マルチエージェント強化学習(MARL)アルゴリズムを提案する。
我々はエッジクラウドコンピューティングを用いたITS環境でアルゴリズムをテストする。
また,本アルゴリズムは,モジュール化および非同期オンライントレーニング手法により,様々な実用上の問題にも対処する。
論文 参考訳(メタデータ) (2024-03-13T18:05:16Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
強化学習(Reinforcement Learning, RL)は、自動化とロボット工学の領域において、変革的なアプローチとして登場した。
本研究は、フィードフォワード生ライダーと速度データのみを用いて、レース環境をナビゲートするRLエージェントを開発し、訓練する。
エージェントのパフォーマンスは、実世界のレースシナリオで実験的に評価される。
論文 参考訳(メタデータ) (2023-09-01T07:03:05Z) - Latent Exploration for Reinforcement Learning [87.42776741119653]
強化学習では、エージェントは環境を探索し、相互作用することでポリシーを学ぶ。
LATent TIme-Correlated Exploration (Lattice)を提案する。
論文 参考訳(メタデータ) (2023-05-31T17:40:43Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Multi-fidelity reinforcement learning framework for shape optimization [0.8258451067861933]
マルチファイダリティ・シミュレーション・セッティングを利用する制御型トランスファー学習フレームワークを提案する。
我々の戦略は高レイノルズ数での翼形状最適化問題に対して展開される。
本研究は,本フレームワークが他の科学的DRLシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-02-22T20:44:04Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
政治以外のRLアルゴリズムは、寿命の長い非定常性に対処できることを示す。
提案手法は潜在変数モデルを用いて,現在および過去の経験から環境表現を学習する。
また, 生涯の非定常性を示すシミュレーション環境もいくつか導入し, 環境変化を考慮しないアプローチを著しく上回っていることを実証的に確認した。
論文 参考訳(メタデータ) (2020-06-18T17:34:50Z) - A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments [1.713291434132985]
強化学習(Reinforcement Learning, RL)アルゴリズムは、在庫管理、レコメンデータシステム、車両交通管理、クラウドコンピューティング、ロボット工学などの分野で応用されている。
これらの領域で生じる多くのタスクの現実的な合併症は、古典的RLアルゴリズムの基礎となる基本的な仮定で解くのを難しくする。
本稿では、動的に変化する環境モデルを扱うために開発されたRL法について調査する。
これらのアルゴリズムの代表的コレクションは、それらの分類と相対的なメリットとデメリットと共に、この研究で詳細に議論されている。
論文 参考訳(メタデータ) (2020-05-19T09:42:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。