論文の概要: Unified Generative Latent Representation for Functional Brain Graphs
- arxiv url: http://arxiv.org/abs/2511.04539v1
- Date: Thu, 06 Nov 2025 16:52:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.512842
- Title: Unified Generative Latent Representation for Functional Brain Graphs
- Title(参考訳): 機能的脳グラフのための一元的潜在表現
- Authors: Subati Abulikemu, Tiago Azevedo, Michail Mamalakis, John Suckling,
- Abstract要約: 機能的脳グラフは、しばしば別々のグラフ理論またはスペクトル記述子によって特徴づけられる。
遅延拡散を伴うグラフ変換器オートエンコーダを用いて、この統一グラフ表現を推定する。
拡散モデルによる分布から, 生物学的に可塑性かつ構造的に構築された合成高密度グラフをサンプリングすることができた。
- 参考スコア(独自算出の注目度): 0.341987335587885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Functional brain graphs are often characterized with separate graph-theoretic or spectral descriptors, overlooking how these properties covary and partially overlap across brains and conditions. We anticipate that dense, weighted functional connectivity graphs occupy a low-dimensional latent geometry along which both topological and spectral structures display graded variations. Here, we estimated this unified graph representation and enabled generation of dense functional brain graphs through a graph transformer autoencoder with latent diffusion, with spectral geometry providing an inductive bias to guide learning. This geometry-aware latent representation, although unsupervised, meaningfully separated working-memory states and decoded visual stimuli, with performance further enhanced by incorporating neural dynamics. From the diffusion modeled distribution, we were able to sample biologically plausible and structurally grounded synthetic dense graphs.
- Abstract(参考訳): 機能的な脳グラフは、しばしば別々のグラフ理論またはスペクトル記述子で特徴づけられる。
我々は、高密度で重み付けされた機能接続グラフが、位相構造とスペクトル構造の両方が階調変化を示す低次元潜在幾何学を占有すると予想する。
本稿では、この統合グラフ表現を推定し、遅延拡散を伴うグラフトランスフォーマーオートエンコーダによる高次機能脳グラフの生成を可能にし、スペクトル幾何学は学習を誘導するための帰納バイアスを与える。
この幾何学を意識した潜在表現は、教師なし、有意義に分離されたワーキングメモリ状態とデコードされた視覚刺激であり、神経力学を取り入れることでさらに性能が向上した。
拡散モデルによる分布から, 生物学的に可塑性かつ構造的に構築された合成高密度グラフをサンプリングすることができた。
関連論文リスト
- Heterogeneous Graph Contrastive Learning with Spectral Augmentation [15.231689595121553]
本稿では、異種グラフニューラルネットワークにおいて、スペクトル強調グラフコントラスト学習モデル(SHCL)を初めて導入する。
提案モデルは不均一グラフ自体を通じて適応的トポロジ拡張スキームを学習する。
複数の実世界のデータセットに対する実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-06-30T14:20:12Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Supercharging Graph Transformers with Advective Diffusion [28.40109111316014]
本稿では,この課題に対処するために,物理に着想を得たグラフトランスモデルであるAdvDIFFormerを提案する。
本稿では,AdvDIFFormerが位相シフトによる一般化誤差を制御できることを示す。
経験的に、このモデルは情報ネットワーク、分子スクリーニング、タンパク質相互作用の様々な予測タスクにおいて優位性を示す。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Neural Sheaf Diffusion: A Topological Perspective on Heterophily and
Oversmoothing in GNNs [16.88394293874848]
セルラーシーフ理論を用いて、グラフの基盤となる幾何学がGNNの性能と深く関連していることを示す。
一般化されたシーブの階層構造を考慮し、無限時間極限におけるクラスの線形分離を実現するための層拡散過程の能力がいかに拡大するかを考察する。
我々は, せん断が非自明な場合, 離散パラメトリック拡散過程はGNNよりもその挙動を制御できることを証明した。
論文 参考訳(メタデータ) (2022-02-09T17:25:02Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Directed Graph Embeddings in Pseudo-Riemannian Manifolds [0.0]
一般的な有向グラフは、3つの成分を結合した埋め込みモデルで効果的に表現できることを示す。
本稿では,リンク予測のタスクに適用することで,この手法の表現能力を実証する。
論文 参考訳(メタデータ) (2021-06-16T10:31:37Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
半単純グラフ変分自動エンコーダを用いて,低次元グラフ潜在表現における高次統計量を取得する。
我々は、階層構造を示すグラフを効率的に表現するために、ポインケア埋め込みを通して潜在空間に双曲幾何学を組み込む。
論文 参考訳(メタデータ) (2020-10-31T05:48:34Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z) - Graph Laplacians, Riemannian Manifolds and their Machine-Learning [2.258160413679475]
約8000個の有限グラフからなるWolframデータベースに、教師付きおよび教師なし機械学習やトポロジデータ解析などのデータサイエンスの最新技術を適用した。
ニューラル分類器,回帰器,ネットワークは,グラフのリッチ平坦性認識から,スペクトルギャップの予測,ハミルトン回路の存在検出に至るまで,多数のタスクを効率的に,高精度に行うことができる。
論文 参考訳(メタデータ) (2020-06-30T09:16:56Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
このようなグラフ埋め込みを学習するための幾何散乱オートエンコーダ(GSAE)ネットワークを提案する。
我々の埋め込みネットワークは、最近提案された幾何散乱変換を用いて、まずリッチグラフ特徴を抽出する。
GSAEは、構造とエネルギーの両方でRNAグラフを整理し、ビスタブルRNA構造を正確に反映していることを示す。
論文 参考訳(メタデータ) (2020-06-12T00:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。