論文の概要: A Theoretical Analysis of Detecting Large Model-Generated Time Series
- arxiv url: http://arxiv.org/abs/2511.07104v1
- Date: Mon, 10 Nov 2025 13:48:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.281111
- Title: A Theoretical Analysis of Detecting Large Model-Generated Time Series
- Title(参考訳): 大規模モデル生成時系列の検出に関する理論的解析
- Authors: Junji Hou, Junzhou Zhao, Shuo Zhang, Pinghui Wang,
- Abstract要約: データ誤用や製造のリスクが高まっているため、時系列大モデル(TSLM)が生成する合成時系列を識別する問題について検討する。
本研究では, TSLM生成時系列を識別するために, 連続プレフィックス上で不確実性指標を集約するホワイトボックス検出器である不確実性収縮推定器(UCE)を紹介する。
- 参考スコア(独自算出の注目度): 19.438825121010783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the increasing risks of data misuse and fabrication, we investigate the problem of identifying synthetic time series generated by Time-Series Large Models (TSLMs) in this work. While there are extensive researches on detecting model generated text, we find that these existing methods are not applicable to time series data due to the fundamental modality difference, as time series usually have lower information density and smoother probability distributions than text data, which limit the discriminative power of token-based detectors. To address this issue, we examine the subtle distributional differences between real and model-generated time series and propose the contraction hypothesis, which states that model-generated time series, unlike real ones, exhibit progressively decreasing uncertainty under recursive forecasting. We formally prove this hypothesis under theoretical assumptions on model behavior and time series structure. Model-generated time series exhibit progressively concentrated distributions under recursive forecasting, leading to uncertainty contraction. We provide empirical validation of the hypothesis across diverse datasets. Building on this insight, we introduce the Uncertainty Contraction Estimator (UCE), a white-box detector that aggregates uncertainty metrics over successive prefixes to identify TSLM-generated time series. Extensive experiments on 32 datasets show that UCE consistently outperforms state-of-the-art baselines, offering a reliable and generalizable solution for detecting model-generated time series.
- Abstract(参考訳): 本研究では,データ誤用や製造のリスクが増大する中で,TSLM(Time-Series Large Models)が生み出す合成時系列の同定の問題について検討する。
モデル生成テキストの検出には広範な研究があるが、これらの既存の手法は基本的なモダリティ差のため時系列データには適用できない。
この問題に対処するために,実時間とモデル生成時系列の微妙な分布差について検討し,モデル生成時系列は実時間とは異なり,再帰的予測の下で不確実性が徐々に減少することを示す収縮仮説を提案する。
我々は、モデル挙動と時系列構造に関する理論的仮定の下で、この仮説を正式に証明する。
モデル生成時系列は、再帰的予測の下で徐々に集中した分布を示し、不確実な収縮を引き起こす。
多様なデータセットにまたがって仮説の実証検証を行う。
この知見に基づいて、連続したプレフィックス上の不確実性指標を集約し、TSLM生成時系列を識別するホワイトボックス検出器であるUncertainty Contraction Estimator (UCE)を導入する。
32のデータセットに対する大規模な実験により、UCEは一貫して最先端のベースラインを上回り、モデル生成時系列を検出する信頼性と一般化可能なソリューションを提供する。
関連論文リスト
- A Unified Frequency Domain Decomposition Framework for Interpretable and Robust Time Series Forecasting [81.73338008264115]
時系列予測の現在のアプローチは、時間領域であれ周波数領域であれ、主に線形層やトランスフォーマーに基づいたディープラーニングモデルを使用する。
本稿では,多種多様な時系列を数学的に抽象化する統合周波数領域分解フレームワークFIREを提案する。
火は長期予測ベンチマークで最先端のモデルを一貫して上回る。
論文 参考訳(メタデータ) (2025-10-11T09:59:25Z) - Enhancing Transformer-Based Foundation Models for Time Series Forecasting via Bagging, Boosting and Statistical Ensembles [7.787518725874443]
時系列基礎モデル(TSFM)は、時系列予測、異常検出、分類、計算のための強力な一般化とゼロショット能力を示している。
本稿では, 統計的およびアンサンブルに基づくエンハンスメント技術を用いて, 頑健さと精度を向上させる手法について検討する。
論文 参考訳(メタデータ) (2025-08-18T04:06:26Z) - Evidential time-to-event prediction with calibrated uncertainty quantification [12.446406577462069]
Time-to-event分析は、臨床予後と治療勧告に関する洞察を提供する。
本稿では,時間とイベントの予測に特化して設計された明らかな回帰モデルを提案する。
我々のモデルは正確かつ信頼性の高い性能を提供し、最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-11-12T15:06:04Z) - Series-to-Series Diffusion Bridge Model [8.590453584544386]
既存の拡散法を包含する包括的フレームワークを提案する。
拡散に基づく新しい時系列予測モデルであるシリーズ・ツー・シリーズ拡散ブリッジモデル(mathrmS2DBM$)を提案する。
実験の結果,$mathrmS2DBM$はポイントツーポイント予測において優れた性能を示すことがわかった。
論文 参考訳(メタデータ) (2024-11-07T07:37:34Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Probabilistic Learning of Multivariate Time Series with Temporal Irregularity [21.361823581838355]
実世界の時系列はしばしば、一様間隔や不整合変数を含む時間的不規則に悩まされる。
本稿では,変数の連立分布を任意の連続点で捉えながら,時間的不規則性をモデル化するエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-15T14:08:48Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。