論文の概要: A general framework for adaptive nonparametric dimensionality reduction
- arxiv url: http://arxiv.org/abs/2511.09486v1
- Date: Thu, 13 Nov 2025 01:57:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.590075
- Title: A general framework for adaptive nonparametric dimensionality reduction
- Title(参考訳): 適応的非パラメトリック次元減少のための一般的な枠組み
- Authors: Antonio Di Noia, Federico Ravenda, Antonietta Mira,
- Abstract要約: 本稿では,最近提案された固有次元推定器を利用して,最適局所適応近傍サイズを推定する。
実世界のデータセットとシミュレーションデータセットの両方の数値実験により,提案手法がよく知られた投影法を大幅に改善することを示す。
- 参考スコア(独自算出の注目度): 1.8424939331296903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimensionality reduction is a fundamental task in modern data science. Several projection methods specifically tailored to take into account the non-linearity of the data via local embeddings have been proposed. Such methods are often based on local neighbourhood structures and require tuning the number of neighbours that define this local structure, and the dimensionality of the lower-dimensional space onto which the data are projected. Such choices critically influence the quality of the resulting embedding. In this paper, we exploit a recently proposed intrinsic dimension estimator which also returns the optimal locally adaptive neighbourhood sizes according to some desirable criteria. In principle, this adaptive framework can be employed to perform an optimal hyper-parameter tuning of any dimensionality reduction algorithm that relies on local neighbourhood structures. Numerical experiments on both real-world and simulated datasets show that the proposed method can be used to significantly improve well-known projection methods when employed for various learning tasks, with improvements measurable through both quantitative metrics and the quality of low-dimensional visualizations.
- Abstract(参考訳): 次元の減少は、現代のデータ科学における基本的な課題である。
局所的な埋め込みによるデータの非線形性を考慮に入れたいくつかのプロジェクション手法が提案されている。
このような手法は、しばしば局所的な近傍構造に基づいており、この局所構造を定義する近傍の数と、データが投影される低次元空間の次元を調整する必要がある。
このような選択は、結果として生じる埋め込みの品質に重大な影響を及ぼす。
本稿では,最近提案された固有次元推定器を利用して,いくつかの望ましい基準に従って最適な局所適応近傍サイズを返却する。
原則として、この適応フレームワークは、局所的な近傍構造に依存する任意の次元削減アルゴリズムの最適ハイパーパラメータチューニングを実行するために使用できる。
実世界のデータセットとシミュレーションデータセットの両方の数値実験により,様々な学習タスクに使用する場合のよく知られた投影法を,定量的な測定値と低次元の可視化品質の両方で測定し,大幅に改善できることが示唆された。
関連論文リスト
- A Survey of Dimension Estimation Methods [0.0]
データの実際の次元を理解することは重要である。
本調査では, 様々な次元推定手法を概観し, 利用した幾何学的情報を用いて分類する。
本研究は, 曲率, 騒音に対する各種応答の検討とともに, これらの手法の性能評価を行う。
論文 参考訳(メタデータ) (2025-07-18T13:05:42Z) - On Probabilistic Embeddings in Optimal Dimension Reduction [1.2085509610251701]
次元減少アルゴリズムは多くのデータサイエンスパイプラインの重要な部分である。
広く利用されているにもかかわらず、多くの非線形次元還元アルゴリズムは理論的観点からは理解されていない。
論文 参考訳(メタデータ) (2024-08-05T12:46:21Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
本研究は,非教師付き次元減少性能指標を初めて導入することを目的としている。
その実現可能性をテストするために、この測定基準は最もよく使われる次元削減アルゴリズムの性能を評価するために用いられている。
新しいパラメータ化問題インスタンスジェネレータが関数ジェネレータの形式で構築されている。
論文 参考訳(メタデータ) (2023-03-17T11:59:33Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
本稿では t-SNE に基づく新しいグラフベース次元削減手法 LaptSNE を提案する。
具体的には、LaptSNEはグラフラプラシアンの固有値情報を利用して、低次元埋め込みにおけるポテンシャルクラスタを縮小する。
ラプラシアン合成目的による最適化を考える際には、より広い関心を持つであろう勾配を解析的に計算する方法を示す。
論文 参考訳(メタデータ) (2022-07-25T14:10:24Z) - Topology-Preserving Dimensionality Reduction via Interleaving
Optimization [10.097180927318703]
本稿では, インターリーブ距離を最小化する最適化手法を次元還元アルゴリズムに組み込む方法について述べる。
データビジュアライゼーションにおけるこのフレームワークの有用性を実証する。
論文 参考訳(メタデータ) (2022-01-31T06:11:17Z) - Adaptive Surface Normal Constraint for Depth Estimation [102.7466374038784]
アダプティブサーフェスノーマル(ASN)制約と呼ばれるシンプルで効果的な手法を導入し、深さ推定と幾何学的一貫性を相関させます。
本手法は3次元形状を忠実に再構成でき,境界,鋭角,雑音などの局所形状変化に頑健である。
論文 参考訳(メタデータ) (2021-03-29T10:36:25Z) - Good practices for Bayesian Optimization of high dimensional structured
spaces [15.488642552157131]
高次元構造データセットにおけるベイズ最適化のための異なる探索空間設計の選択の効果について検討する。
遅延空間における最適化境界を自動的に定義する新しい手法を評価します。
我々は実践者に推薦する。
論文 参考訳(メタデータ) (2020-12-31T07:00:39Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
ディープラーニングフレームワークにおける機械学習問題に適用可能な適応正規化を取り入れた一階最適化アルゴリズムを提案する。
一般的なベンチマークデータセットに適用した従来のネットワークモデルに基づく画像分類タスクを用いて,提案アルゴリズムの有効性を実証的に実証した。
論文 参考訳(メタデータ) (2020-04-14T07:54:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。