論文の概要: LEARN: Learning End-to-End Aerial Resource-Constrained Multi-Robot Navigation
- arxiv url: http://arxiv.org/abs/2511.17765v1
- Date: Fri, 21 Nov 2025 20:29:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.410728
- Title: LEARN: Learning End-to-End Aerial Resource-Constrained Multi-Robot Navigation
- Title(参考訳): LEARN: 航空資源に制約のあるマルチロボットナビゲーションを学習する
- Authors: Darren Chiu, Zhehui Huang, Ruohai Ge, Gaurav S. Sukhatme,
- Abstract要約: LEARNは、マルチUAVナビゲーションのための軽量で2段階の安全誘導型強化学習フレームワークである。
本システムは,低分解能のTime-of-Flight(ToF)センサと,コンパクトで注目度の高いRLポリシを備えたシンプルなモーションプランナーを組み合わせる。
LEARNの6つのクレージーフリークオーター上での生存性を実証し,屋内および屋外の多様な環境下での飛行を完遂した。
- 参考スコア(独自算出の注目度): 15.483749658372124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nano-UAV teams offer great agility yet face severe navigation challenges due to constrained onboard sensing, communication, and computation. Existing approaches rely on high-resolution vision or compute-intensive planners, rendering them infeasible for these platforms. We introduce LEARN, a lightweight, two-stage safety-guided reinforcement learning (RL) framework for multi-UAV navigation in cluttered spaces. Our system combines low-resolution Time-of-Flight (ToF) sensors and a simple motion planner with a compact, attention-based RL policy. In simulation, LEARN outperforms two state-of-the-art planners by $10\%$ while using substantially fewer resources. We demonstrate LEARN's viability on six Crazyflie quadrotors, achieving fully onboard flight in diverse indoor and outdoor environments at speeds up to $2.0 m/s$ and traversing $0.2 m$ gaps.
- Abstract(参考訳): ナノUAVチームは、オンボードセンシング、通信、計算の制約により、優れたアジリティを提供するが、厳しいナビゲーション課題に直面している。
既存のアプローチは高解像度のビジョンや計算集約的なプランナーに依存しており、これらのプラットフォームでは実現不可能である。
本稿では,マルチUAVナビゲーションのための軽量2段階安全誘導型強化学習(RL)フレームワークであるLEARNを紹介する。
本システムは,低分解能のTime-of-Flight(ToF)センサと,コンパクトで注目度の高いRLポリシを備えたシンプルなモーションプランナーを組み合わせる。
シミュレーションでは、LEARNは2つの最先端のプランナーを10\%$で上回り、リソースはかなり少ない。
LEARNの6つのクレージーフリークオーター上での生存性を実証し、様々な屋内および屋外環境において最大2.0m/sの速度で飛行し、0.2m/sのギャップを横断する飛行を実現した。
関連論文リスト
- Scaling Multi Agent Reinforcement Learning for Underwater Acoustic Tracking via Autonomous Vehicles [1.7923169244369488]
マルチエージェント強化学習は、サンプル非効率で悪名高い。
GazeboのLRAUVのような高忠実度シミュレータは、リアルタイムのシングルロボットシミュレーションを100倍高速にする。
本稿では,高忠実度シミュレーションをGPU加速環境へ伝達する反復蒸留法を提案する。
論文 参考訳(メタデータ) (2025-05-13T04:42:30Z) - A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment [48.90852123901697]
本稿では, エンドツーエンドの深層強化学習(DRL)ポリシーを四元数へシームレスに移行できるプラットフォームを提案する。
本プラットフォームは, ホバリング, 動的障害物回避, 軌道追尾, 気球打上げ, 未知環境における計画など, 多様な環境を提供する。
論文 参考訳(メタデータ) (2025-04-21T14:25:23Z) - RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation [9.25068777307471]
本稿では,乱雑な環境下でのアジャイルドローン飛行のための学習型ビジュアルプランナを紹介する。
提案したプランナーは、ミリ秒で衝突のないウェイポイントを生成し、ドローンは、異なる知覚、マッピング、計画モジュールを構築することなく、複雑な環境でアジャイルな操作を実行できる。
論文 参考訳(メタデータ) (2025-02-04T06:42:08Z) - SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins [78.53885607559958]
無線対応経路計画フレームワークであるSCoTTを提案する。
SCoTT は DP-WA* の2% 以内で経路ゲインを達成し, 連続的に短い軌道を生成できることを示す。
また,ガゼボシミュレーションにおいて,SCoTTをROSノードとして配置することにより,本手法の実用性を示す。
論文 参考訳(メタデータ) (2024-11-27T10:45:49Z) - VAPOR: Legged Robot Navigation in Outdoor Vegetation Using Offline
Reinforcement Learning [53.13393315664145]
本研究では,非構造で密集した屋外環境における自律脚ロボットナビゲーションのための新しい手法であるVAPORを提案する。
本手法は,アクター・クリティカル・ネットワークと実際の屋外植生で収集された任意のデータを用いて,新しいRLポリシーを訓練する。
VAPORの動作は成功率を最大40%向上させ、平均電流消費量を最大2.9%削減し、正規化軌道長を最大11.2%削減する。
論文 参考訳(メタデータ) (2023-09-14T16:21:27Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Learning-'N-Flying: A Learning-based, Decentralized Mission Aware UAS
Collision Avoidance Scheme [0.0]
Learning-'N-Flying (LNF) はマルチUAS衝突回避(CA)フレームワークである。
分散化され、オンザフライで動作し、異なるオペレータが管理する自律uasが複雑なミッションを安全に実行できるようにする。
提案手法はオンライン(数ミリ秒単位の計算時間)で動作可能であり,特定の仮定下では,最悪の場合,1%未満の障害率であることを示す。
論文 参考訳(メタデータ) (2021-01-25T20:38:17Z) - Robustifying the Deployment of tinyML Models for Autonomous
mini-vehicles [61.27933385742613]
本稿では,ループ内環境を含む自動運転ミニ車両を対象とした閉ループ学習フローを提案する。
我々は、小型CNNのファミリーを利用してミニ車両を制御し、コンピュータビジョンアルゴリズム、すなわち専門家を模倣してターゲット環境で学習する。
CNNのファミリを実行する場合、我々のソリューションはSTM32L4とk64f(Cortex-M4)の他の実装よりも優れており、レイテンシを13倍以上削減し、エネルギー消費を92%削減する。
論文 参考訳(メタデータ) (2020-07-01T07:54:26Z) - Learning-to-Fly: Learning-based Collision Avoidance for Scalable Urban
Air Mobility [2.117421588033177]
複数のUASのための分散型オンデマンド空中衝突回避フレームワークであるL2F(Learning-to-Fly)を提案する。
L2Fは,1)学習に基づく意思決定方式と,2)分散線形プログラミングに基づくUAS制御アルゴリズムからなる2段階衝突回避手法である。
本手法のリアルタイム適用性は,MILP法よりも6000ドル高速であり,操作の余地が十分ある場合,100%の衝突を解消できる。
論文 参考訳(メタデータ) (2020-06-23T18:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。