論文の概要: Exploiting Movable Logical Qubits for Lattice Surgery Compilation
- arxiv url: http://arxiv.org/abs/2512.04169v1
- Date: Wed, 03 Dec 2025 19:00:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-05 21:11:45.820967
- Title: Exploiting Movable Logical Qubits for Lattice Surgery Compilation
- Title(参考訳): 格子手術における移動可能な論理量子ビットの探索
- Authors: Laura S. Herzog, Lucas Berent, Aleksander Kubica, Robert Wille,
- Abstract要約: 我々は,論理格子手術CNOTゲートにおいて,移動可能な論理量子ビットをテレポーテーションにより利用することによって,パラダイムシフトを導入する。
数値シミュレーションにより,提案手法は経路回路の深さを大幅に低減できることが示された。
当社のメソッドのオープンソース実装はGitHubで公開されている。
- 参考スコア(独自算出の注目度): 43.290156259065554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lattice surgery with two-dimensional quantum error correcting codes is among the leading schemes for fault-tolerant quantum computation, motivated by superconducting hardware architectures. In conventional lattice surgery compilation schemes, logical circuits are compiled following a place-and-route paradigm, where logical qubits remain statically fixed in space throughout the computation. In this work, we introduce a paradigm shift by exploiting movable logical qubits via teleportation during the logical lattice surgery CNOT gate. Focusing on lattice surgery with the color code, we propose a proof-of-concept compilation scheme that leverages this capability. Numerical simulations show that the proposed approach can substantially reduce the routed circuit depth compared to standard place-and-route compilation techniques. Our results demonstrate that optimizations based on movable logical qubits are not limited to architectures with physically movable qubits, such as neutral atoms or trapped ions - they are also readily applicable to superconducting quantum hardware. An open-source implementation of our method is available on GitHub https://github.com/munich-quantum-toolkit/qecc.
- Abstract(参考訳): 2次元の量子誤り訂正符号を用いた格子手術は、超伝導ハードウェアアーキテクチャによって動機付けられたフォールトトレラント量子計算の主要なスキームの一つである。
従来の格子手術のコンパイル方式では、論理回路はプレース・アンド・ルートのパラダイムに従ってコンパイルされる。
本研究では,論理格子ゲートCNOTゲートにおいて,移動可能な論理量子ビットをテレポーテーションにより利用することによって,パラダイムシフトを導入する。
カラーコードを用いた格子手術に焦点をあてて,この機能を利用した概念コンパイル手法を提案する。
数値シミュレーションにより,提案手法は標準的な場所と経路のコンパイル手法と比較して経路回路の深さを大幅に低減できることが示された。
この結果から, 可動量子ビットに基づく最適化は, 中性原子や閉じ込められたイオンなどの物理的に可動な量子ビットを持つアーキテクチャに限らず, 超伝導量子ハードウェアにも容易に適用可能であることが示された。
当社のメソッドのオープンソース実装はGitHub https://github.com/munich-quantum-toolkit/qeccで公開されている。
関連論文リスト
- Planar Fault-Tolerant Quantum Computation with Low Overhead [5.232949916418351]
計画BB符号のフォールトトレラントな論理演算を設計するためのフレームワークであるCode craftを紹介する。
我々は,制御NOTゲート,状態伝達,パウリ測定などの論理演算を,このフレームワーク内で効率的に実装可能であることを示す。
論文 参考訳(メタデータ) (2025-06-22T15:07:03Z) - Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits [31.25958618453706]
2つの距離3の繰り返し符号量子ビット間の格子手術を1つの距離3の曲面符号量子ビットに分割して示す。
我々は、類似の非符号化回路と比較して、復号化$ZZ$論理2ビットオブザーバブルの値を改善する。
論文 参考訳(メタデータ) (2025-01-08T16:49:27Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
中性原子量子コンピュータ上での論理量子ビットによるマジック状態蒸留の実験的実現について述べる。
提案手法では,多くの論理量子ビット上で並列に量子演算を符号化し,実行するために動的に再構成可能なアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-12-19T18:38:46Z) - Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
スイッチングゲートのみを用いることで、FT回路設計の制約を尊重するコードスキームを提案する。
我々は、既存の量子プロセッサの動作に適した低距離カラーコードへのスキームの適用を解析する。
論理的補助量子ビットが十分に確実に準備できることを前提として、このスキームを大規模な並列化でどのように実装できるかを論じる。
論文 参考訳(メタデータ) (2024-09-20T12:54:47Z) - An Architecture for Improved Surface Code Connectivity in Neutral Atoms [3.3186866268167146]
我々は、中性原子配列からなる量子コンピュータに対処し、ハードウェアの物理的接続をより高い論理接続に変換する表面コードアーキテクチャを設計する。
通常の格子手術と比較すると、これは量子ビット全体のフットプリントと実行時間を削減し、小型のQEC回路に必要な時空オーバーヘッドを低減させる。
本稿では, 物理原子移動方式を用いて, 近接する葉柄群における量子ビット間の全接続を可能とし, 大規模回路に対して高い接続ルーティング空間を創出する, 層間格子手術を提案する。
論文 参考訳(メタデータ) (2023-09-24T00:10:47Z) - A High Performance Compiler for Very Large Scale Surface Code Computations [38.26470870650882]
大規模量子誤り訂正のための最初の高性能コンパイラを提案する。
任意の量子回路を格子手術に基づく表面符号演算に変換する。
コンパイラは、物理デバイスのリアルタイム操作に向けられた速度で、ストリーミングパイプラインを使用して数百万のゲートを処理することができる。
論文 参考訳(メタデータ) (2023-02-05T19:06:49Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
超伝導量子プロセッサを設計する。
本稿では,2量子共振共振ゲートを備えたユニバーサルゲートセットを提案する。
ノイズの多い量子ハードウェアのための$rm SU(16)$ゲートの合成を数値的に実証する。
論文 参考訳(メタデータ) (2022-12-08T18:59:53Z) - Relaxation times do not capture logical qubit dynamics [50.04886706729045]
本研究では,空間雑音相関が論理量子ビットのリッチで直観的な動的挙動を生じさせることを示す。
この作業は論理キュービットの実験的な実装をガイドし、ベンチマークするのに役立ちます。
論文 参考訳(メタデータ) (2020-12-14T19:51:19Z) - Entangling logical qubits with lattice surgery [47.037230560588604]
10-qubit イオントラップ量子情報処理装置における2つのトポロジカル符号化量子ビット間の格子手術の実験的実現について述べる。
特に、2つの論理量子ビット間の絡み合いを示し、論理状態のテレポーテーションを実装する。
論文 参考訳(メタデータ) (2020-06-04T18:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。