論文の概要: Optimized Machine Learning Methods for Studying the Thermodynamic Behavior of Complex Spin Systems
- arxiv url: http://arxiv.org/abs/2512.07458v1
- Date: Mon, 08 Dec 2025 11:33:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.861934
- Title: Optimized Machine Learning Methods for Studying the Thermodynamic Behavior of Complex Spin Systems
- Title(参考訳): 複雑なスピン系の熱力学挙動研究のための最適機械学習手法
- Authors: Dmitrii Kapitan, Pavel Ovchinnikov, Konstantin Soldatov, Petr Andriushchenko, Vitalii Kapitan,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、スピン系モデルにおける臨界相と低温相の状態を分析するための効率的で汎用的なツールである。
CNNは、完全連結アーキテクチャと比較して、根平均二乗誤差(RMSE)を著しく低減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a systematic study of the application of convolutional neural networks (CNNs) as an efficient and versatile tool for the analysis of critical and low-temperature phase states in spin system models. The problem of calculating the dependence of the average energy on the spatial distribution of exchange integrals for the Edwards-Anderson model on a square lattice with frustrated interactions is considered. We further construct a single convolutional classifier of phase states of the ferromagnetic Ising model on square, triangular, honeycomb, and kagome lattices, trained on configurations generated by the Swendsen-Wang cluster algorithm. Computed temperature profiles of the averaged posterior probability of the high-temperature phase form clear S-shaped curves that intersect in the vicinity of the theoretical critical temperatures and allow one to determine the critical temperature for the kagome lattice without additional retraining. It is shown that convolutional models substantially reduce the root-mean-square error (RMSE) compared with fully connected architectures and efficiently capture complex correlations between thermodynamic characteristics and the structure of magnetic correlated systems.
- Abstract(参考訳): 本稿では,スピン系モデルにおける臨界相状態および低温相状態の解析のための効率的かつ汎用的なツールとして,畳み込みニューラルネットワーク(CNN)の適用に関する系統的研究を行う。
フラストレーションのある相互作用を持つ正方格子上のEdwards-Andersonモデルにおける交換積分の空間分布に対する平均エネルギーの依存性を計算する問題を考える。
さらに,Swendsen-Wangクラスタアルゴリズムによって生成された構成に基づいて,角,三角形,ハニカム,加護目格子上での強磁性イジングモデルの位相状態の単一の畳み込み分類器を構築した。
高温相の平均後確率の計算温度プロファイルは、理論臨界温度付近で交差する透明なS字型曲線を形成し、追加のリトレーニングなしに加護目格子の臨界温度を決定することができる。
畳み込みモデルでは, 完全連結構造に比べて根平均二乗誤差(RMSE)を著しく低減し, 熱力学特性と磁気相関系の構造との複雑な相関関係を効果的に捉えた。
関連論文リスト
- Multi-Stage Graph Neural Networks for Data-Driven Prediction of Natural Convection in Enclosed Cavities [0.0]
グラフニューラルネットワーク(GNN)は、シミュレーションデータから直接熱流体挙動を学ぶための新しい代替手段を提供する。
本稿では,階層的なプールとアンプール操作を利用してグローバル-ローカル相互作用を段階的にモデル化する,新しい多段階GNNアーキテクチャを提案する。
実験により,提案モデルにより予測精度が向上し,訓練効率が向上し,長期誤差の蓄積が減少した。
論文 参考訳(メタデータ) (2025-09-07T13:05:39Z) - Nonparametric learning of stochastic differential equations from sparse and noisy data [2.389598109913754]
強い構造仮定なしでデータから直接ドリフト関数を学習する。
我々は,新しいモンテカルロ法(SMC)を用いた期待最大化法(EM)アルゴリズムを開発した。
EM-SMC-RKHS法により、低データ状態における力学系のドリフト関数を正確に推定できる。
論文 参考訳(メタデータ) (2025-08-15T17:01:59Z) - Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
本研究では,微分可能物理の概念に基づいて,非構造格子を階層化するアルゴリズムを提案する。
多孔質媒質中のわずかに圧縮可能な流体流を制御した線形方程式と波動方程式の2つのPDE上でのアルゴリズムの性能を示す。
その結果,検討したシナリオでは,関心点におけるモデル変数のダイナミクスを保ちながら,格子点数を最大10倍に削減した。
論文 参考訳(メタデータ) (2025-07-24T11:02:13Z) - Models of Heavy-Tailed Mechanistic Universality [62.107333654304014]
トレーニングニューラルネットワークにおける重み付け行動を引き起こす属性を探索するために,ランダム行列モデルのファミリーを提案する。
このモデルの下では、3つの独立した因子の組み合わせによって、尾翼の電力法則によるスペクトル密度が生じる。
ニューラルネットワークトレーニングの5段階以上において、ニューラルネットワークのスケーリング法則、軌道、および5段階以上の位相を含む重尾の出現に対する我々のモデルの影響について論じる。
論文 参考訳(メタデータ) (2025-06-04T00:55:01Z) - Auxiliary dynamical mean-field approach for Anderson-Hubbard model with off-diagonal disorder [4.052573140142517]
対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線・対角線
以上の結果から, 対角線外障害がMott型金属絶縁体転移に及ぼす影響が示唆された。
論文 参考訳(メタデータ) (2025-02-11T08:24:43Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Direct data-driven forecast of local turbulent heat flux in
Rayleigh-B\'{e}nard convection [0.0]
Prandtl number $rm Pr=7$とRayleigh number $rm Ra=107$の2次元乱流Rayleigh-B'enard対流
縮小潜在データ空間における流れデータの時間進行に2つの繰り返しニューラルネットワークを適用する。
12層を隠蔽した畳み込み自己エンコーダは、乱流データの次元を元の大きさの0.2%まで縮めることができる。
論文 参考訳(メタデータ) (2022-02-26T12:39:19Z) - Accurate simulation and thermal tuning by temperature-adaptive boundary
interactions on quantum many-body systems [2.13230439190003]
本研究では, 1次元(1次元)多体系の熱力学を模倣し, 調整する温度適応型エンタングルメントシミュレータ(TAES)を提案する。
1Dスピンチェーンのベンチマークでは、TAESは既存の有限温度アプローチと比較して最先端の精度を上回っている。
論文 参考訳(メタデータ) (2021-04-30T15:21:06Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
量子情報力学と熱化を特徴付けるツールとして、OTOC(Out-of-time-orderor)が確立されている。
我々は、OTOCが、ETH(Eigenstate Thermalisation hypothesis)の詳細な詳細を調査するための、本当に正確なツールであることを明確に示している。
無限温度状態における局所作用素の和からなる可観測物の一般クラスに対して、$omega_textrmGOE$の有限サイズスケーリングを推定する。
論文 参考訳(メタデータ) (2021-03-01T17:51:46Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。