論文の概要: Modularity in Transformers: Investigating Neuron Separability & Specialization
- arxiv url: http://arxiv.org/abs/2408.17324v1
- Date: Fri, 30 Aug 2024 14:35:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 15:08:40.251146
- Title: Modularity in Transformers: Investigating Neuron Separability & Specialization
- Title(参考訳): 変圧器のモジュール性 : ニューロン分離性と特殊性の検討
- Authors: Nicholas Pochinkov, Thomas Jones, Mohammed Rashidur Rahman,
- Abstract要約: トランスフォーマーモデルは様々なアプリケーションでますます普及していますが、内部動作に対する我々の理解は限定的です。
本稿では、視覚(ViT)モデルと言語(Mistral 7B)モデルの両方に着目し、トランスフォーマーアーキテクチャ内のニューロンのモジュラリティとタスクの特殊化について検討する。
選択的プルーニングとMoEficationクラスタリングの組み合わせを用いて、異なるタスクやデータサブセットにわたるニューロンの重複と特殊化を分析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer models are increasingly prevalent in various applications, yet our understanding of their internal workings remains limited. This paper investigates the modularity and task specialization of neurons within transformer architectures, focusing on both vision (ViT) and language (Mistral 7B) models. Using a combination of selective pruning and MoEfication clustering techniques, we analyze the overlap and specialization of neurons across different tasks and data subsets. Our findings reveal evidence of task-specific neuron clusters, with varying degrees of overlap between related tasks. We observe that neuron importance patterns persist to some extent even in randomly initialized models, suggesting an inherent structure that training refines. Additionally, we find that neuron clusters identified through MoEfication correspond more strongly to task-specific neurons in earlier and later layers of the models. This work contributes to a more nuanced understanding of transformer internals and offers insights into potential avenues for improving model interpretability and efficiency.
- Abstract(参考訳): トランスフォーマーモデルは様々なアプリケーションでますます普及していますが、内部動作に対する我々の理解は限定的です。
本稿では、視覚(ViT)モデルと言語(Mistral 7B)モデルの両方に着目し、トランスフォーマーアーキテクチャ内のニューロンのモジュラリティとタスクの特殊化について検討する。
選択的プルーニングとMoEficationクラスタリングの組み合わせを用いて、異なるタスクやデータサブセットにわたるニューロンの重複と特殊化を分析する。
本研究は,タスク固有のニューロン群が,タスク間の重なり合いの程度が異なることを示すものである。
ランダムに初期化したモデルであっても、ニューロンの重要パターンがある程度持続していることが観察され、洗練を訓練する固有の構造が示唆された。
さらに、MoEficationによって同定されたニューロンクラスターは、モデルの初期層と後期層のタスク特異的ニューロンに強く対応していることが判明した。
この研究はトランスフォーマー内部のより微妙な理解に寄与し、モデルの解釈可能性と効率を改善するための潜在的な方法に関する洞察を提供する。
関連論文リスト
- NeuSemSlice: Towards Effective DNN Model Maintenance via Neuron-level Semantic Slicing [10.909463767558023]
NeuSemSliceはセマンティック・アウェア・モデルメンテナンスタスクのためのセマンティックスライシング技術を導入する新しいフレームワークである。
NeuSemSliceは、その意味的類似性に応じて、異なるカテゴリや層にまたがる臨界ニューロンを特定し、分類し、マージする。
徹底的な評価は、NeuSemSliceが3つのタスクのベースラインを著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-07-26T03:19:13Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Understanding Neural Coding on Latent Manifolds by Sharing Features and
Dividing Ensembles [3.625425081454343]
システム神経科学は、単一ニューロンのチューニング曲線と集団活動の分析を特徴とする2つの相補的な神経データ観に依存している。
これらの2つの視点は、潜伏変数とニューラルアクティビティの関係を制約するニューラル潜伏変数モデルにおいてエレガントに結合する。
ニューラルチューニング曲線にまたがる機能共有を提案し、性能を大幅に改善し、より良い最適化を実現する。
論文 参考訳(メタデータ) (2022-10-06T18:37:49Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Modelling Neuronal Behaviour with Time Series Regression: Recurrent
Neural Networks on C. Elegans Data [0.0]
我々は、C. Elegansの神経システムを、異なるニューラルネットワークアーキテクチャを用いてデータ駆動モデルでモデル化し、シミュレートする方法を示す。
隠れ層の大きさが4単位のGRUモデルでは,異なる刺激に対するシステムの応答を高精度に再現可能であることを示す。
論文 参考訳(メタデータ) (2021-07-01T10:39:30Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。