論文の概要: Physics-informed Polynomial Chaos Expansion with Enhanced Constrained Optimization Solver and D-optimal Sampling
- arxiv url: http://arxiv.org/abs/2512.10873v1
- Date: Thu, 11 Dec 2025 18:03:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.500475
- Title: Physics-informed Polynomial Chaos Expansion with Enhanced Constrained Optimization Solver and D-optimal Sampling
- Title(参考訳): 厳密な最適化解法とD-最適サンプリングによる物理インフォーマルな多項式カオス展開
- Authors: Qitian Lu, Himanshu Sharma, Michael D. Shields, Lukáš Novák,
- Abstract要約: 物理インフォームドカオス拡張(PC$2$)は、物理的に制約された代理モデリングフレームワークを提供する。
本研究は,PC$2$フレームワークの2つの補完的な拡張について検討する。
- 参考スコア(独自算出の注目度): 6.442594752349353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed polynomial chaos expansions (PC$^2$) provide an efficient physically constrained surrogate modeling framework by embedding governing equations and other physical constraints into the standard data-driven polynomial chaos expansions (PCE) and solving via the Karush-Kuhn-Tucker (KKT) conditions. This approach improves the physical interpretability of surrogate models while achieving high computational efficiency and accuracy. However, the performance and efficiency of PC$^2$ can still be degraded with high-dimensional parameter spaces, limited data availability, or unrepresentative training data. To address this problem, this study explores two complementary enhancements to the PC$^2$ framework. First, a numerically efficient constrained optimization solver, straightforward updating of Lagrange multipliers (SULM), is adopted as an alternative to the conventional KKT solver. The SULM method significantly reduces computational cost when solving physically constrained problems with high-dimensionality and derivative boundary conditions that require a large number of virtual points. Second, a D-optimal sampling strategy is utilized to select informative virtual points to improve the stability and achieve the balance of accuracy and efficiency of the PC$^2$. The proposed methods are integrated into the PC$^2$ framework and evaluated through numerical examples of representative physical systems governed by ordinary or partial differential equations. The results demonstrate that the enhanced PC$^2$ has better comprehensive capability than standard PC$^2$, and is well-suited for high-dimensional uncertainty quantification tasks.
- Abstract(参考訳): 物理インフォームド多項式カオス展開(PC$^2$)は、支配方程式やその他の物理的制約を標準データ駆動多項式カオス展開(PCE)に埋め込み、カルーシュ・クーン・タッカー(KKT)条件で解くことにより、効率的な物理的制約付き代理モデリングフレームワークを提供する。
このアプローチは、高い計算効率と精度を達成しつつ、代理モデルの物理的解釈性を向上させる。
しかし、PC$^2$の性能と効率は、高次元のパラメータ空間、限られたデータ可用性、あるいは非表現的なトレーニングデータで分解することができる。
そこで本研究では,PC$2$フレームワークの2つの補完的拡張について検討する。
第一に、従来のKKTソルバの代替として、数値的に効率的な制約付き最適化解法であるラグランジュ乗算器(SULM)の更新が採用されている。
SULM法は、多数の仮想点を必要とする高次元および微分境界条件を持つ物理的に制約された問題を解く際に、計算コストを著しく削減する。
次に、D-最適サンプリング戦略を用いて、情報的仮想点を選択して安定性を改善し、PC$2$の精度と効率のバランスを達成する。
提案手法はPC$^2$フレームワークに統合され,常微分方程式や偏微分方程式によって支配される代表的物理系の数値例を通して評価される。
その結果,拡張PC$2$は標準PC$2$よりも包括的能力が高く,高次元不確実性定量化タスクに適していることがわかった。
関連論文リスト
- Tensor Gaussian Processes: Efficient Solvers for Nonlinear PDEs [16.38975732337055]
TGPSは偏微分方程式の機械学習解法である。
1次元GPの集合を学習する作業を減らす。
既存の手法に比べて精度と効率が優れている。
論文 参考訳(メタデータ) (2025-10-15T17:23:21Z) - Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
非常に大きな3DメッシュのCFD問題を効率的に解く新しいアーキテクチャであるFactized Implicit Global Convolution (FIGConv)を提案する。
FIGConvは、既存の3DニューラルCFDモデルよりも大幅に改善された2次複雑性の$O(N2)$を達成する。
業界標準のAhmedボディデータセットと大規模DrivAerNetデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2025-02-06T18:57:57Z) - P$^2$C$^2$Net: PDE-Preserved Coarse Correction Network for efficient prediction of spatiotemporal dynamics [38.53011684603394]
我々はPDE保存型粗補正ネットワーク(P$2$C$2$Net)を導入し、小さなデータ構造における粗いメッシュグリッド上のPDE問題を解決する。
モデルは,(1)粗い解(すなわちシステム状態)の更新を学習するトレーニング可能なPDEブロックと,(2)一貫した解の修正を行うニューラルネットワークブロックの2つの相乗的モジュールから構成される。
論文 参考訳(メタデータ) (2024-10-29T14:45:07Z) - Variational Quantum Framework for Partial Differential Equation Constrained Optimization [0.6138671548064355]
PDE制約最適化問題に対する新しい変分量子フレームワークを提案する。
提案フレームワークは,変分量子リニア(VQLS)アルゴリズムとブラックボックスを主構成ブロックとして利用する。
論文 参考訳(メタデータ) (2024-05-26T18:06:43Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
制約付きマルコフ決定プロセス(CMDP)は、多くの高度な応用において重要である。
本稿では,パラメトリックアクターポリシーを効率的に訓練するための2段階深度決定規則(TS-DDR)を提案する。
現状の手法と比較して, 解の質を高め, 数桁の計算時間を削減できることが示されている。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - QSlack: A slack-variable approach for variational quantum semi-definite
programming [5.0579795245991495]
量子コンピュータは、最もよく知られた古典的アルゴリズムのスピードアップを提供することができる。
半定値および線形プログラムを含む最適化問題の解法を示す。
これらの問題に対する予備問題と双対問題の両方の実装が、基礎的真理に近づいていることが示される。
論文 参考訳(メタデータ) (2023-12-06T19:00:01Z) - Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
非滑らかな非最適化問題は、機械学習とビジネス製造に現れる。
2つのコア課題は、有限収束を保証する効率的な方法の開発を妨げる。
GFMとSGFMの2相版も提案され, 改良された大規模評価結果が得られた。
論文 参考訳(メタデータ) (2022-09-12T06:53:24Z) - Polynomial Optimization: Enhancing RLT relaxations with Conic
Constraints [0.0]
円錐最適化は、非スケール問題に対するトラクタブルで保証されたアルゴリズムを設計するための強力なツールとして登場した。
最適化問題に対するRLT緩和の強化について,9種類の制約を加えて検討する。
我々は、これらの変種とその性能を、互いに、そして標準RCT緩和に関してどのように設計するかを示す。
論文 参考訳(メタデータ) (2022-08-11T02:13:04Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。