論文の概要: Rethinking Physics-Informed Regression Beyond Training Loops and Bespoke Architectures
- arxiv url: http://arxiv.org/abs/2512.13217v1
- Date: Mon, 15 Dec 2025 11:31:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.640737
- Title: Rethinking Physics-Informed Regression Beyond Training Loops and Bespoke Architectures
- Title(参考訳): 物理インフォームド・レグレッションの再考 - トレーニングループとBespokeアーキテクチャを越えて
- Authors: Lorenzo Sabug, Eric Kerrigan,
- Abstract要約: 本稿では,既存サンプルの微分および曲率情報と同時に,予測点における状態を計算する手法を提案する。
各クエリは、ニューラルネットワークのようなグローバル関数近似器ベースのソリューションとは対照的に、事前または再トレーニングなしで、低計算コストで処理することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We revisit the problem of physics-informed regression, and propose a method that directly computes the state at the prediction point, simultaneously with the derivative and curvature information of the existing samples. We frame each prediction as a constrained optimisation problem, leveraging multivariate Taylor series expansions and explicitly enforcing physical laws. Each individual query can be processed with low computational cost without any pre- or re-training, in contrast to global function approximator-based solutions such as neural networks. Our comparative benchmarks on a reaction-diffusion system show competitive predictive accuracy relative to a neural network-based solution, while completely eliminating the need for long training loops, and remaining robust to changes in the sampling layout.
- Abstract(参考訳): 物理インフォームドレグレッションの問題を再考し、既存のサンプルの微分および曲率情報と同時に予測点の状態を直接計算する手法を提案する。
我々は、各予測を制約付き最適化問題とし、多変量テイラー級数展開を活用し、物理的法則を明示的に強制する。
各クエリは、ニューラルネットワークのようなグローバル関数近似器ベースのソリューションとは対照的に、事前または再トレーニングなしで、低計算コストで処理することができる。
反応拡散システムのベンチマークでは、ニューラルネットワークベースのソリューションと比較して、競合予測精度が示され、長いトレーニングループの必要性を完全に排除し、サンプリングレイアウトの変更に対して堅牢なままです。
関連論文リスト
- VIKING: Deep variational inference with stochastic projections [48.946143517489496]
変分平均場近似は、現代の過度にパラメータ化されたディープニューラルネットワークと競合する傾向がある。
パラメータ空間の2つの独立線型部分空間を考える単純な変分族を提案する。
これにより、オーバーパラメトリゼーションを反映した、完全に相関した近似後部を構築することができる。
論文 参考訳(メタデータ) (2025-10-27T15:38:35Z) - Neural Optimal Transport Meets Multivariate Conformal Prediction [58.43397908730771]
条件付きベクトル回帰(CVQR)のためのフレームワークを提案する。
CVQRは、ニューラルネットワークの最適輸送と量子化された最適化を組み合わせて、予測に適用する。
論文 参考訳(メタデータ) (2025-09-29T19:50:19Z) - Chaos into Order: Neural Framework for Expected Value Estimation of Stochastic Partial Differential Equations [0.9944647907864256]
線形偏微分方程式(SPDE)の期待値を近似する物理インフォームドニューラルネットワークを提案する。
トレーニング中の時空座標とノイズ実現の両方のランダムサンプリングを活用することで、LECは標準フィードフォワードニューラルネットワークをトレーニングし、複数のサンプル間での残留損失を最小限に抑える。
このモデルでは, より低次元における解の期待値の正確な近似を常に学習し, 空間次元の増加に伴うロバスト性低下を予測可能であることを示す。
論文 参考訳(メタデータ) (2025-02-05T23:27:28Z) - Self-adaptive weights based on balanced residual decay rate for physics-informed neural networks and deep operator networks [0.46664938579243564]
物理インフォームド・ディープ・ラーニングは偏微分方程式を解くための有望な代替手段として登場した。
複雑な問題に対して、これらのネットワークをトレーニングすることは依然として困難であり、しばしば不満足な精度と効率をもたらす。
本稿では,異なるトレーニングポイント間で残留減衰率のバランスをとる点適応重み付け法を提案する。
論文 参考訳(メタデータ) (2024-06-28T00:53:48Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Learning through atypical ''phase transitions'' in overparameterized
neural networks [0.43496401697112685]
現在のディープニューラルネットワークは可観測性が高く(最大数十億の接続重み)、非線形である。
しかし、過剰な降下アルゴリズムによってほぼ完全にデータに適合し、予期せぬ精度の予測を達成できる。
これらは一般化なしの恐ろしい挑戦である。
論文 参考訳(メタデータ) (2021-10-01T23:28:07Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
活性化緩和(AR)は、バックプロパゲーション勾配を力学系の平衡点として構成することで動機付けられる。
我々のアルゴリズムは、正しいバックプロパゲーション勾配に迅速かつ堅牢に収束し、単一のタイプの計算単位しか必要とせず、任意の計算グラフで操作できる。
論文 参考訳(メタデータ) (2020-09-11T11:56:34Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。