論文の概要: Chaos into Order: Neural Framework for Expected Value Estimation of Stochastic Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2502.03670v2
- Date: Mon, 11 Aug 2025 10:30:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 16:55:51.768385
- Title: Chaos into Order: Neural Framework for Expected Value Estimation of Stochastic Partial Differential Equations
- Title(参考訳): Chaos into Order:確率的部分微分方程式の期待値推定のためのニューラルネットワークフレームワーク
- Authors: Ísak Pétursson, María Óskarsdóttir,
- Abstract要約: 線形偏微分方程式(SPDE)の期待値を近似する物理インフォームドニューラルネットワークを提案する。
トレーニング中の時空座標とノイズ実現の両方のランダムサンプリングを活用することで、LECは標準フィードフォワードニューラルネットワークをトレーニングし、複数のサンプル間での残留損失を最小限に抑える。
このモデルでは, より低次元における解の期待値の正確な近似を常に学習し, 空間次元の増加に伴うロバスト性低下を予測可能であることを示す。
- 参考スコア(独自算出の注目度): 0.9944647907864256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic partial differential equations (SPDEs) describe the evolution of random processes over space and time, but their solutions are often analytically intractable and computationally expensive to estimate. In this paper, we propose the Learned Expectation Collapser (LEC), a physics-informed neural framework designed to approximate the expected value of linear SPDE solutions without requiring domain discretization. By leveraging randomized sampling of both space-time coordinates and noise realizations during training, LEC trains standard feedforward neural networks to minimize residual loss across multiple stochastic samples. We hypothesize and empirically confirm that this training regime drives the network to converge toward the expected value of the solution of the SPDE. Using the stochastic heat equation as a testbed, we evaluate performance across a diverse set of 144 experimental configurations that span multiple spatial dimensions, noise models, and forcing functions. The results show that the model consistently learns accurate approximations of the expected value of the solution in lower dimensions and a predictable decrease in accuracy with increased spatial dimensions, with improved stability and robustness under increased Monte Carlo sampling. Our findings offer new insight into how neural networks implicitly learn statistical structure from stochastic differential operators and suggest a pathway toward scalable, simulator-free SPDE solvers.
- Abstract(参考訳): 確率偏微分方程式(Stochastic partial differential equation、SPDE)は、空間と時間のランダムな過程の進化を記述しているが、その解はしばしば解析的に抽出可能であり、計算的に見積もるのにコストがかかる。
本稿では,線形SPDEソリューションの期待値を,ドメインの離散化を必要とせずに近似する物理インフォームド・ニューラル・フレームワークであるLearted expectation Collapser (LEC)を提案する。
トレーニング中の時空座標とノイズ実現の両方のランダムサンプリングを活用することで、LECは標準的なフィードフォワードニューラルネットワークをトレーニングし、複数の確率的なサンプル間の残留損失を最小限に抑える。
我々は、このトレーニング体制がSPDEのソリューションの期待値に向かってネットワークを収束させることを仮定し、実証的に確認する。
確率的熱方程式をテストベッドとして、複数の空間次元、ノイズモデル、強制関数にまたがる144の実験的な構成の多種多様な集合の性能を評価する。
この結果から, モンテカルロサンプリング法において, 低次元における解の期待値の正確な近似と, 空間次元の増大による予測可能な精度低下を連続的に学習し, 安定性とロバスト性の向上を図った。
我々の発見は、ニューラルネットワークが確率微分演算子から統計的構造を暗黙的に学習する方法に関する新たな洞察を与え、スケーラブルでシミュレータフリーなSPDEソルバへの道筋を示唆している。
関連論文リスト
- End-to-End Probabilistic Framework for Learning with Hard Constraints [47.10876360975842]
ProbHardE2Eは、運用上の制約をハード要件として組み込むことのできるシステムを学ぶ。
分散情報を新しい方法で活用することで、厳しい制約を課す。
一連の非線形制約(モデリングと柔軟性のパワーを高める)を組み込むことができます。
論文 参考訳(メタデータ) (2025-06-08T05:29:50Z) - LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
ラグランジュの平均値定理に着想を得た演算子ネットワークであるLaPONを提案する。
損失関数ではなく、ニューラルネットワークアーキテクチャに直接、事前の知識を組み込む。
LaPONは、高忠実度流体力学シミュレーションのためのスケーラブルで信頼性の高いソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-18T10:45:17Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Probabilistic neural operators for functional uncertainty quantification [14.08907045605149]
本稿では,ニューラル演算子の出力関数空間上の確率分布を学習するフレームワークである確率論的ニューラル演算子(PNO)を紹介する。
PNOは、厳密な適切なスコアリングルールに基づく生成モデリングにより、ニューラル演算子を拡張し、不確実性情報をトレーニングプロセスに直接統合する。
論文 参考訳(メタデータ) (2025-02-18T14:42:11Z) - MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
マルチスケールタイムステップ(MultiPDENet)を用いたPDE組み込みネットワークを提案する。
特に,有限差分構造に基づく畳み込みフィルタを少数のパラメータで設計し,最適化する。
4階ランゲ・クッタ積分器を微細な時間スケールで備えた物理ブロックが確立され、PDEの構造を埋め込んで予測を導出する。
論文 参考訳(メタデータ) (2025-01-27T12:15:51Z) - Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs [44.890946409769924]
ニューラル演算子(NO)は特に有望な量子化として出現している。
本研究では,複数のNOをアンサンブルすることで,高いエラー領域を同定し,不確実性の高い推定を行うことができることを示す。
次に、ProbConservフレームワーク内でこれらのよく校正されたUQ推定を使ってモデルを更新するOperator-ProbConservを紹介します。
論文 参考訳(メタデータ) (2024-03-15T19:21:27Z) - Neural variational Data Assimilation with Uncertainty Quantification using SPDE priors [28.804041716140194]
ディープラーニングコミュニティの最近の進歩は、ニューラルネットワークと変分データ同化フレームワークを通じて、この問題に対処することができる。
本研究では、部分微分方程式(SPDE)とガウス過程(GP)の理論を用いて状態の空間的および時間的共分散を推定する。
論文 参考訳(メタデータ) (2024-02-02T19:18:12Z) - Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
量子化は、性能を維持しながら推論の計算コストを下げることができることを示す。
4つの標準PDEデータセットと3つのネットワークアーキテクチャの結果、量子化対応のトレーニングは、設定と3桁のFLOPで機能することがわかった。
論文 参考訳(メタデータ) (2023-08-14T09:21:19Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
本稿では,Laplace をベースとしたベイズ推定と ANN アーキテクチャを併用して ODE 軌道の近似を求めるハイブリッド手法を提案する。
本手法の有効性を,非分析的ソリューションを用いた疫学システム,Susceptible-Infectious-Demoved (SIR) モデルを用いて実証した。
論文 参考訳(メタデータ) (2022-10-17T09:02:41Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Distributional Gradient Matching for Learning Uncertain Neural Dynamics
Models [38.17499046781131]
本稿では,数値積分ボトルネックを回避するため,不確実なニューラル・オーダを推定するための新しい手法を提案する。
我々のアルゴリズム - 分布勾配マッチング (DGM) は、よりスムーズなモデルと動的モデルを共同で訓練し、ワッサーシュタイン損失を最小化することでそれらの勾配と一致する。
数値積分に基づく従来の近似推論手法と比較して,我々の手法は訓練がより速く,これまで見つからなかった軌道の予測がより高速であり,ニューラルODEの文脈では,はるかに正確であることがわかった。
論文 参考訳(メタデータ) (2021-06-22T08:40:51Z) - Accurate and Reliable Forecasting using Stochastic Differential
Equations [48.21369419647511]
ディープラーニングモデルにとって、現実世界の環境に浸透する不確実性を適切に特徴付けることは、非常に困難である。
本論文では,HNNの予測平均と分散の相互作用を特徴づけるSDE-HNNを開発した。
本手法は,予測性能と不確実性定量化の両方の観点から,最先端のベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-03-28T04:18:11Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。