論文の概要: Generative Urban Flow Modeling: From Geometry to Airflow with Graph Diffusion
- arxiv url: http://arxiv.org/abs/2512.14725v1
- Date: Tue, 09 Dec 2025 16:44:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-18 17:06:26.691416
- Title: Generative Urban Flow Modeling: From Geometry to Airflow with Graph Diffusion
- Title(参考訳): 生成的都市流れモデリング:グラフ拡散による幾何から気流へ
- Authors: Francisco Giral, Álvaro Manzano, Ignacio Gómez, Petros Koumoutsakos, Soledad Le Clainche,
- Abstract要約: 本研究では,非構造メッシュ上の定常都市風場を合成するための生成拡散フレームワークを提案する。
このフレームワークは階層的なグラフニューラルネットワークとスコアに基づく拡散モデリングを組み合わせて、正確で多様な速度場を生成する。
- 参考スコア(独自算出の注目度): 3.461887736192436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban wind flow modeling and simulation play an important role in air quality assessment and sustainable city planning. A key challenge for modeling and simulation is handling the complex geometries of the urban landscape. Low order models are limited in capturing the effects of geometry, while high-fidelity Computational Fluid Dynamics (CFD) simulations are prohibitively expensive, especially across multiple geometries or wind conditions. Here, we propose a generative diffusion framework for synthesizing steady-state urban wind fields over unstructured meshes that requires only geometry information. The framework combines a hierarchical graph neural network with score-based diffusion modeling to generate accurate and diverse velocity fields without requiring temporal rollouts or dense measurements. Trained across multiple mesh slices and wind angles, the model generalizes to unseen geometries, recovers key flow structures such as wakes and recirculation zones, and offers uncertainty-aware predictions. Ablation studies confirm robustness to mesh variation and performance under different inference regimes. This work develops is the first step towards foundation models for the built environment that can help urban planners rapidly evaluate design decisions under densification and climate uncertainty.
- Abstract(参考訳): 都市風のモデリングとシミュレーションは,大気質評価と持続可能な都市計画において重要な役割を担っている。
モデリングとシミュレーションの重要な課題は、都市景観の複雑な地形を扱うことである。
低次モデルは幾何学的効果を捉えるのに限られるが、高忠実度計算流体力学(CFD)シミュレーションは、特に複数の測地線や風環境において非常に高価である。
本稿では、幾何学的情報のみを必要とする非構造メッシュ上で定常都市風況を合成するための生成拡散フレームワークを提案する。
このフレームワークは階層的なグラフニューラルネットワークとスコアベースの拡散モデルを組み合わせて、時間的ロールアウトや密度測定を必要とせず、正確で多様な速度場を生成する。
複数のメッシュスライスと風の角度でトレーニングされたこのモデルは、目に見えない地形に一般化し、ウェイクや再循環ゾーンなどのキーフロー構造を復元し、不確実性を認識した予測を提供する。
アブレーション研究は、異なる推論条件下でのメッシュの変動と性能に対するロバスト性を確認している。
この研究は、都市プランナーが密度化と気候の不確実性の下で設計決定を迅速に評価するのに役立つように構築された環境の基礎モデルに向けた最初のステップである。
関連論文リスト
- Geometry-aware Active Learning of Spatiotemporal Dynamic Systems [4.251030047034566]
本稿では,動的システムのモデリングのための幾何対応能動学習フレームワークを提案する。
データ収集のための空間的位置を戦略的に識別し、予測精度をさらに最大化する適応型能動学習戦略を開発した。
論文 参考訳(メタデータ) (2025-04-26T19:56:38Z) - Generative Human Geometry Distribution [49.58025398670139]
我々は、最近提案された、高忠実度で単一の人間の幾何学をモデル化可能な、幾何学的分布に基づいて構築する。
本稿では,ネットワークパラメータではなく2次元特徴写像として分布を符号化する手法と,ガウスではなく領域としてSMPLモデルを提案する。
実験の結果,提案手法は既存の最先端手法よりも優れており,幾何学的品質が57%向上していることがわかった。
論文 参考訳(メタデータ) (2025-03-03T11:55:19Z) - Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows [4.798951413107239]
本稿では,グラフニューラルネットワーク(GNN)とアテンションに基づく自己回帰モデルを活用したグラフベース効果的ダイナミクス学習(Graph-LED)を提案する。
本研究では,シリンダーを過ぎる流れや,レイノルズ数の範囲の後方方向のステップを流れる流れなど,流体力学の一連の問題に対する提案手法を評価する。
論文 参考訳(メタデータ) (2025-02-11T22:14:30Z) - Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries [23.111935712144277]
複雑な幾何学体を取り巻く流体力学の迅速かつ正確なシミュレーションは、様々な工学的・科学的応用において重要である。
科学機械学習(SciML)はかなりの可能性を示してきたが、この分野のほとんどの研究は単純な幾何学に限られている。
本稿では,複雑な地形上での流動予測のための多種多様なSciMLモデルのベンチマークにより,このギャップを解消する。
論文 参考訳(メタデータ) (2024-12-31T00:23:15Z) - A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
空気力学は航空宇宙工学の重要な問題であり、しばしば翼のような固体物と相互作用する流れを伴う。
本稿では, 固体物体上の非圧縮性流れのモデル化について考察する。
ジオメトリを効果的に組み込むため,メッシュ表現に翼形状を効率よく,かつ効率的に統合するメッセージパッシング方式を提案する。
これらの設計選択は、純粋にデータ駆動の機械学習フレームワークであるGeoMPNNにつながり、NeurIPS 2024 ML4CFDコンペティションで最優秀学生賞を受賞し、総合で4位となった。
論文 参考訳(メタデータ) (2024-12-12T16:05:39Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
生成モデルは3次元幾何学システムの生成において大きな可能性を示してきた。
既存のアプローチは静的構造のみで動作し、物理系は常に自然界において動的であるという事実を無視する。
本研究では3次元軌跡の時間分布をモデル化する最初の拡散モデルである幾何軌道拡散モデル(GeoTDM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:36:41Z) - Generative Aerodynamic Design with Diffusion Probabilistic Models [0.7373617024876725]
生成モデルは、シミュレーションの大規模なデータセット上でジオメトリを一般化することにより、ジオメトリを提供する可能性を秘めている。
特に,XFOILシミュレーションで訓練した拡散確率モデルを用いて,所定の空力特性と制約を条件とした2次元翼ジオメトリーを合成する。
モデルが同一の要件と制約に対して多様な候補設計を生成可能であることを示し、最適化手順に複数の出発点を提供する設計空間を効果的に探索する。
論文 参考訳(メタデータ) (2024-09-20T08:38:36Z) - PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
高分解能CFDシミュレーションは流体挙動や流れパターンに関する貴重な洞察を提供する。
解像度が大きくなると、計算データ要求と時間の増加が比例する。
複雑な流体の流れを学習し,シミュレーションを直接予測するメッシュ非依存のネットワークであるPointSAGEを提案する。
論文 参考訳(メタデータ) (2024-04-06T12:49:09Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
乱流モデルの自動検出ツールとしてマルチエージェント強化学習を導入する。
等方性乱流と等方性乱流の大規模渦シミュレーションにおけるこのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2020-05-18T18:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。