論文の概要: Toward Efficient Testing of Graph Neural Networks via Test Input Prioritization
- arxiv url: http://arxiv.org/abs/2512.18228v1
- Date: Sat, 20 Dec 2025 06:01:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.241019
- Title: Toward Efficient Testing of Graph Neural Networks via Test Input Prioritization
- Title(参考訳): テスト入力優先化によるグラフニューラルネットワークの効率的なテストに向けて
- Authors: Lichen Yang, Qiang Wang, Zhonghao Yang, Daojing He, Yu Li,
- Abstract要約: グラフニューラルネットワーク(GNN)は,グラフ構造化データの処理において顕著な有効性を示した。
それらはデプロイ後に失敗を示し、重大な結果をもたらす可能性がある。
GNNのための新しいテスト入力優先化フレームワークGraphRankを提案する。
- 参考スコア(独自算出の注目度): 16.822534516515912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable efficacy in handling graph-structured data; however, they exhibit failures after deployment, which can cause severe consequences. Hence, conducting thorough testing before deployment becomes imperative to ensure the reliability of GNNs. However, thorough testing requires numerous manually annotated test data. To mitigate the annotation cost, strategically prioritizing and labeling high-quality unlabeled inputs for testing becomes crucial, which facilitates uncovering more model failures with a limited labeling budget. Unfortunately, existing test input prioritization techniques either overlook the valuable information contained in graph structures or are overly reliant on attributes extracted from the target model, i.e., model-aware attributes, whose quality can vary significantly. To address these issues, we propose a novel test input prioritization framework, named GraphRank, for GNNs. GraphRank introduces model-agnostic attributes to compensate for the limitations of the model-aware ones. It also leverages the graph structure information to aggregate attributes from neighboring nodes, thereby enhancing the model-aware and model-agnostic attributes. Furthermore, GraphRank combines the above attributes with a binary classifier, using it as a ranking model to prioritize inputs. This classifier undergoes iterative training, which enables it to learn from each round's feedback and improve its performance accordingly. Extensive experiments demonstrate GraphRank's superiority over existing techniques.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの処理において顕著な効果を示したが、デプロイ後に障害を示し、重大な結果をもたらす可能性がある。
したがって、GNNの信頼性を確保するためには、デプロイ前に徹底的なテストを実施する必要がある。
しかし、徹底的なテストには多数の手動のアノテートテストデータが必要である。
アノテーションのコストを軽減するために、テストのための高品質なラベル付けされていない入力を戦略的に優先順位付けおよびラベル付けすることが重要である。
残念ながら、既存のテスト入力優先順位付け技術は、グラフ構造に含まれる貴重な情報を見渡すか、ターゲットモデルから抽出された属性、すなわち、品質が著しく変化するモデル認識属性に過度に依存している。
これらの問題に対処するため、GNN向けに新しいテスト入力優先化フレームワーク、GraphRankを提案する。
GraphRankはモデル認識属性を導入し、モデル認識属性の制限を補う。
また、グラフ構造情報を利用して、隣接するノードからの属性を集約し、モデル認識およびモデル非依存属性を強化する。
さらに、GraphRankは上記の属性とバイナリ分類器を組み合わせることで、インプットの優先順位付けにランキングモデルを使用する。
この分類器は反復的な訓練を受けており、各ラウンドのフィードバックから学び、それに応じてパフォーマンスを向上させることができる。
大規模な実験は、既存の技術よりもGraphRankの方が優れていることを示している。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification [10.497590357666114]
帰納的グラフ表現学習のための自己ラベル拡張VGAEモデルを提案する。
学習にラベル情報を活用するため,本モデルではノードラベルをワンホット符号化入力とし,モデルトレーニングにおいてラベル再構成を行う。
提案したモデルアーカイブは、セミ教師付き学習環境下でのノード分類において、特に優越する結果を約束する。
論文 参考訳(メタデータ) (2024-03-26T08:59:37Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
グラフニューラルネットワーク(GNN)は、さまざまな領域にわたるグラフデータのモデリングに広く応用されている。
近年の研究では、特定のモデルのトレーニングや、よく訓練されたGNN上でのデータ修正に重点を置いて、OOD検出のグラフを調査している。
本稿では、GNNアーキテクチャのトレーニングデータと修正から独立して動作する、データ中心、教師なし、プラグアンドプレイのソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-10T08:37:39Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - SizeShiftReg: a Regularization Method for Improving Size-Generalization
in Graph Neural Networks [5.008597638379227]
グラフニューラルネットワーク(GNN)は,グラフ分類のデファクトモデルとなっている。
テストデータへのアクセスを必要とせずに,任意のGNNに適用可能な正規化戦略を提案する。
我々の正規化は、粗い手法を用いてトレーニンググラフのサイズの変化をシミュレートする考え方に基づいている。
論文 参考訳(メタデータ) (2022-07-16T09:50:45Z) - Taxonomy of Benchmarks in Graph Representation Learning [14.358071994798964]
グラフニューラルネットワーク(GNN)は、その固有の幾何学を考慮し、ニューラルネットワークの成功をグラフ構造化データに拡張する。
現在、グラフ表現学習ベンチマークによって、与えられたモデルのどの側面が調査されているかはよく分かっていない。
本稿では,グラフの摂動によってGNNの性能がどれだけ変化するかに基づいて,$textitsensitivity profile$に従ってベンチマークデータセットを分類する手法を開発した。
論文 参考訳(メタデータ) (2022-06-15T18:01:10Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Efficient Robustness Certificates for Discrete Data: Sparsity-Aware
Randomized Smoothing for Graphs, Images and More [85.52940587312256]
本稿では,初期作業を想定したランダム化平滑化フレームワークに基づくモデル非依存の証明書を提案する。
このアプローチがさまざまなモデル、データセット、タスクに対して有効であることを示します。
論文 参考訳(メタデータ) (2020-08-29T10:09:02Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。