論文の概要: Symmetrization of 3D Generative Models
- arxiv url: http://arxiv.org/abs/2512.18953v1
- Date: Mon, 22 Dec 2025 02:05:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.574263
- Title: Symmetrization of 3D Generative Models
- Title(参考訳): 3次元生成モデルの対称性化
- Authors: Nicolas Caytuiro, Ivan Sipiran,
- Abstract要約: 本稿では,モデルアーキテクチャではなくトレーニングデータを変更することで,3次元生成モデルにおける対称性を促進する新しいデータ中心アプローチを提案する。
提案手法は, 実世界の3次元形状と, 最先端モデルによる試料の反射対称性の解析から始まる。
- 参考スコア(独自算出の注目度): 5.431496585727342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel data-centric approach to promote symmetry in 3D generative models by modifying the training data rather than the model architecture. Our method begins with an analysis of reflectional symmetry in both real-world 3D shapes and samples generated by state-of-the-art models. We hypothesize that training a generative model exclusively on half-objects, obtained by reflecting one half of the shapes along the x=0 plane, enables the model to learn a rich distribution of partial geometries which, when reflected during generation, yield complete shapes that are both visually plausible and geometrically symmetric. To test this, we construct a new dataset of half-objects from three ShapeNet classes (Airplane, Car, and Chair) and train two generative models. Experiments demonstrate that the generated shapes are symmetrical and consistent, compared with the generated objects from the original model and the original dataset objects.
- Abstract(参考訳): 本稿では,モデルアーキテクチャではなくトレーニングデータを変更することで,3次元生成モデルにおける対称性を促進する新しいデータ中心アプローチを提案する。
提案手法は, 実世界の3次元形状と, 最先端モデルによる試料の反射対称性の解析から始まる。
我々は、x=0平面に沿った形状の半分を反映して得られる半物体のみにのみ生成モデルを訓練することにより、生成時に反映される部分幾何学のリッチな分布を学習し、視覚的に可視かつ幾何学的に対称な完全な形状が得られるという仮説を立てた。
これをテストするために、3つのShapeNetクラス(Airplane, Car, Chair)から半対象のデータセットを構築し、2つの生成モデルを訓練する。
実験により、生成された形状は、元のモデルと元のデータセットオブジェクトから生成されたオブジェクトと比較して対称で一貫性があることが示された。
関連論文リスト
- Generative Human Geometry Distribution [49.58025398670139]
我々は、最近提案された、高忠実度で単一の人間の幾何学をモデル化可能な、幾何学的分布に基づいて構築する。
本稿では,ネットワークパラメータではなく2次元特徴写像として分布を符号化する手法と,ガウスではなく領域としてSMPLモデルを提案する。
実験の結果,提案手法は既存の最先端手法よりも優れており,幾何学的品質が57%向上していることがわかった。
論文 参考訳(メタデータ) (2025-03-03T11:55:19Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - FullFormer: Generating Shapes Inside Shapes [9.195909458772187]
本稿では,複雑な3次元形状を内部幾何学的詳細で生成するための最初の暗黙的生成モデルを提案する。
我々のモデルは、非水密メッシュデータから学習できるネストした3次元表面を表現するために符号のない距離場を使用する。
本研究では,ShapeNetデータセットの"Cars","Planes","Chairs"といった一般的なクラス上で,最先端のクラウド生成結果が得られたことを実証する。
論文 参考訳(メタデータ) (2023-03-20T16:19:23Z) - Generative Deformable Radiance Fields for Disentangled Image Synthesis
of Topology-Varying Objects [52.46838926521572]
3D認識生成モデルは、モノクロ2D画像の集合から3Dニューラル放射場(NeRF)を生成するスーパーブパフォーマンスを実証した。
本研究では, トポロジー変化物体の放射場を非交絡形状と外観変化で合成する生成モデルを提案する。
論文 参考訳(メタデータ) (2022-09-09T08:44:06Z) - Learning to Generate 3D Shapes from a Single Example [28.707149807472685]
本稿では,入力形状の幾何学的特徴を空間的範囲にわたって捉えるために,マルチスケールのGANモデルを提案する。
我々は、外部の監督や手動のアノテーションを必要とせずに、基準形状のボクセルピラミッドで生成モデルを訓練する。
結果の形状は異なるスケールで変化を示し、同時に基準形状のグローバルな構造を保持する。
論文 参考訳(メタデータ) (2022-08-05T01:05:32Z) - Representing Shape Collections with Alignment-Aware Linear Models [17.635846912560627]
3次元点雲の古典的表現を線形形状モデルとして再考する。
私たちの重要な洞察は、ディープラーニングを活用して、アフィン変換として形状の集合を表現することです。
論文 参考訳(メタデータ) (2021-09-03T16:28:34Z) - GLASS: Geometric Latent Augmentation for Shape Spaces [28.533018136138825]
幾何学的に動機づけられたエネルギーを用いて拡張し、その結果、サンプル(トレーニング)モデルのスパースコレクションを増強する。
本研究では,高剛性(ARAP)エネルギーのヘシアン解析を行い,その基礎となる(局所)形状空間に投射する。
我々は,3~10個のトレーニング形状から始めても,興味深い,意味のある形状変化の例をいくつか提示する。
論文 参考訳(メタデータ) (2021-08-06T17:56:23Z) - Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis [143.22192229456306]
本稿では,体積形状を表す3次元エネルギーモデルを提案する。
提案モデルの利点は6倍である。
実験により,提案モデルが高品質な3d形状パターンを生成できることが実証された。
論文 参考訳(メタデータ) (2020-12-25T06:09:36Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
RGB-D画像から見えないオブジェクトの6Dポーズとサイズを復元する新しい学習手法を提案する。
本研究では,事前学習したカテゴリ形状からの変形を明示的にモデル化することにより,3次元オブジェクトモデルを再構築するディープネットワークを提案する。
論文 参考訳(メタデータ) (2020-07-16T16:45:05Z) - Modeling 3D Shapes by Reinforcement Learning [33.343268605720176]
RLに基づく2段階のニューラル・フレームワークを提案し、3次元モデリングポリシーを学習する。
モデリングエージェントを効果的に訓練するために,ポリシー,模倣学習,強化学習を組み合わせた新しい学習アルゴリズムを導入する。
実験の結果、エージェントは規則的および構造的メッシュモデルを生成するための優れたポリシーを学習できることがわかった。
論文 参考訳(メタデータ) (2020-03-27T13:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。